Skip to main content
Log in

Thermally induced solute migration in 2011 Al alloy implanted with Ti, Cr, or Al ions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic experimental study of solute migration during thermal annealing and oxidation of type 2011 aluminum alloy is described. Specimens of this alloy were implanted with Ti, Cr, or Al ions to doses in the range 2 × 1015–2 × 1017 ions cm-2. The implanted substrates were annealed at 500 °C in vacuum or an oxygen atmosphere and analyzed with Rutherford backscattering and scanning electron microscopy. Changes to the alloy composition resulting from segregation of constituents in the near surface region occurred for both implanted and unimplanted specimens, though the effect was substantially more pronounced following implantation. In addition, segregation was affected by the type and dose of the implanted ion. For the Ti implants under oxidizing conditions, the Ti ions were found to diffuse toward the surface and form a thick oxide layer. Segregation of Cu and Pb/Bi then occurred below this oxide layer. In contrast, implanted Cr ions under similar conditions were observed to diffuse into the substrate with only a thin oxide layer being formed at the surface. Consequently, Cu and Pb/Bi segregated close to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski and B. E. Hopkins, Oxidation of Metal and Alloys, 2nd ed. (Butterworth, London, 1967).

    Google Scholar 

  2. J. Nowotny, Diffusion in Solids and High Temperature Oxidation of Metals (Trans. Tech, Zurich, 1992).

    Google Scholar 

  3. G. C. Wood, Oxid. Met. 2, 11 (1970).

    Article  CAS  Google Scholar 

  4. G. Dearnley, J. D. Benjamin, W. S. Miller, and L. Weidman, Corr. Sci. 16, 717 (1976).

    Google Scholar 

  5. G. Dearnley, Nucl. Instrum. Methods 182/183, 899 (1981).

    Article  Google Scholar 

  6. F. H. Stott, Z. Peide, W. A. Grant, and R. P. M. Procter, Corr. Sci. 22, 305 (1982).

    Article  CAS  Google Scholar 

  7. E. N. Kaufmann, R.G. Musket, J.J. Truhan, K.S. Ggraboski, C. R. Gossett, and I. L. Singer, Nucl. Instrum. Methods 209/210, 953 (1983).

    Article  Google Scholar 

  8. P. Y. Hou and J. Stringer, Oxid. Met. 34, 299 (1990).

    Article  CAS  Google Scholar 

  9. K. M. Kramer, J. R. Tesmer, and M. Nastasi, Nucl. Instrum. Methods B 59/60, 865 (1991).

    Article  Google Scholar 

  10. Z. Rao, J. S. Williams, and D. K. Sood, Surf. Coatings Technol. 51, 52–56 (1992).

    Article  CAS  Google Scholar 

  11. Z. Rao, J. S. Williams, and D. K. Sood, Nucl. Instrum. Methods B 73, 362–366 (1993).

    Article  Google Scholar 

  12. M. Slater, G. Carter, and W. A. Grant, Nucl. Instrum. Methods 209/210, 1023 (1983).

    Article  Google Scholar 

  13. J.W. Chu, N. Dytlewski, P.J. Evans, and D.K. Sood, Nucl. Instrum. Methods B 80/81, 289–293 (1993).

    Article  Google Scholar 

  14. G. W. Meetham, J. Mater. Sci. 26, 853 (1991).

    Article  CAS  Google Scholar 

  15. A. D. Marwick, R. C. Piller, and P.M. Sivell, J. Nucl. Mater. 83, 35 (1979).

    Article  CAS  Google Scholar 

  16. N. Q. Lam, K. Janghorban, and A.J. Ardell, J. Nucl. Mater. 101, 314 (1981).

    Article  CAS  Google Scholar 

  17. R. S. Averback, L. E. Rehn, and W. Wagner, J. Nucl. Mater. 118, 83 (1983).

    Article  CAS  Google Scholar 

  18. L. E. Rehn, R. S. Averback, and P. R. Okamoto, Mater. Sci. Eng. 69, 1 (1985).

    Article  CAS  Google Scholar 

  19. Metals Handbook, 9th ed., Vol. 2.

  20. I. G. Brown, J. E. Galvin, B. F. Gavin, and R. A. MacGill, Rev. Sci. Instrum. 57, 1069 (1986).

    Article  CAS  Google Scholar 

  21. I. G. Brown, B. Feinberg, and J. E. Galvin, J. Appl. Phys. 63, 4889 (1988).

    Article  CAS  Google Scholar 

  22. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Permagon, New York, 1985).

    Google Scholar 

  23. L. R. Doolittle, Nucl. Instrum. Methods B 9, 334 (1985).

    Article  Google Scholar 

  24. D.K. Sood, Radiat. Eff. 63, 14 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, J.W., Evans, P.J. & Sood, D.K. Thermally induced solute migration in 2011 Al alloy implanted with Ti, Cr, or Al ions. Journal of Materials Research 11, 1683–1693 (1996). https://doi.org/10.1557/JMR.1996.0211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0211

Navigation