Skip to main content
Log in

Can carbon-implanted silicon be applied as wide-bandgap emitter?

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We examine the formation of Si1-xCx (x = 0.04–0.2) by means of CFy (y = 0,1,3) implantation in p-type Si, for application as a wide-bandgap emitter in a Si heterojunc-tion bipolar transistor. Upon implantation with 2.5 × 1016 CF+/cm2 at 45 keV, and subsequently with 2.5 × 1016 C+/cm2 at 30 keV, an amorphous top layer is formed. Annealing at temperatures up to 900 °C leads to a layer consisting of nanocrystalline material. High resolution transmission electron microscopy and secondary ion mass spectrometry show that a well-defined nanocrystalline/crystalline interface is created at an anneal temperature of 550 °C. At higher temperatures lattice defects start to develop. Preliminary attempts to dope the material via phosphorus or arsenic implantation indicate that temperatures of at least 900 °C are required to activate a fraction of the implanted dopants. This, however, adversely affects the adlayer/substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High Speed Semiconductor Devices, edited by S. M. Sze (John Wiley & Sons, New York, 1990), p. 366.

    Google Scholar 

  2. M. Kuwagaki, K. Imai, and Y. Amemiya, Jpn. J. Appl. Phys. 28, L754 (1989).

    Article  CAS  Google Scholar 

  3. M. Kuwagaki, K. Imai, T. Ogino, and Y. Amemiya, Jpn. J. Appl. Phys. 28, L173 (1989).

    Article  CAS  Google Scholar 

  4. T. Sugii, T. Yamazaki, Y. Arimoto, T. Ito, Y. Furumura, I. Namura, H. Goto, and A. Tahara, Microelectr. Eng. 19, 335 (1992), and references therein.

    Article  CAS  Google Scholar 

  5. M. J. J. Theunissen, M. C. Martens, J. B. Clegg, D. E. W. Vandenhoudt, and P. C. Zalm, J. Electrochem. Soc. 142, 226 (1995).

    Article  CAS  Google Scholar 

  6. K. J. Reeson, P. L. F. Hemment, J. Stoemenos, J. R. Davis, and G. K. A. Celler, Inst. Phys. Conf. Ser. No. 87, 427 (1987), in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by J.C. Sturm, C. K. Chen, L. Pfeiffer, and P. L. F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 473.

    CAS  Google Scholar 

  7. P. Martin, B. Daunin, M. Dupuy, A. Ermolieff, M. Olivier, A. M. Papon, and G. Rolland, J. Appl. Phys. 67, 2908 (1990).

    Article  CAS  Google Scholar 

  8. J. F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  9. H. J. Ligthart and J. Politiek, Philips Tech. Rev. 43, 185 (1986).

    Google Scholar 

  10. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary Ion Mass Spectrometry (John Wiley & Sons, New York, 1989).

    Google Scholar 

  11. L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  12. P. A. Stolk, D. J. Eaglesham, H-J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 66, 1370 (1995).

    Article  CAS  Google Scholar 

  13. J. Kato, J. Electrochem. Soc. 137, 1918 (1990).

    Article  CAS  Google Scholar 

  14. M. Seibt, J. Imschweiler, and H-A. Hefner, in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited S. Ashok, J. Chevallier, K. Sumino, and E. Weber (Mater. Res. Soc. Symp. Proc. 262, Pittsburgh, PA, 1992), p. 1103.

  15. S. Mantl, Mater. Sci. Rep. 8, 1 (1992).

    Article  Google Scholar 

  16. E. H. A. Dekempeneer, J. J. M. Ottenheim, D. E. W. Vandenhoudt, C. W. T. Bulle-Lieuwma, and E. G. C. Lathouwers, Nucl. Instrum. Methods B 55, 769 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oostra, D.J., Politiek, J., Bulle-Lieuwma, C.W.T. et al. Can carbon-implanted silicon be applied as wide-bandgap emitter?. Journal of Materials Research 11, 1653–1658 (1996). https://doi.org/10.1557/JMR.1996.0207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0207

Navigation