Skip to main content
Log in

Direct observations of heteroepitaxial diamond on a silicon(110) substrate by microwave plasma chemical vapor deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heteroepitaxial diamond has been successfully deposited on a Si(110) substrate by the microwave plasma chemical vapor deposition method. The pretreatment consisted of carburization and bias-enhanced nucleation steps. Cross-sectional transmission electron microscopy reveals that diamond can be in the cube-on-cube epitaxial relationship with the Si substrate. Various orientation relationships between diamond and Si substrates have also been observed, depending on the location where the plasma applied. Near the center of the plasma, twins were rarely observed in cube-on-cube epitaxial regions. Away from the center of the plasma ball, Σ3 twins are seen first, and then additional Σ9 and Σ27 twins occur near the edge of the plasma. In general, defect density in the epitaxial films is less than that observed in polycrystalline ones. No interlayer could be observed between diamond and silicon. In addition, 2H-type hexagonal diamond has also been found, and is in epitaxy with the Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Inuzuka, S. Koizumi, and K. Suzuki, Diamond Relat. Mater. 1, 175 (1992).

    Article  CAS  Google Scholar 

  2. H. Maeda, S. Masuda, K. Kusakabe, and S. Morooka, Diamond Relat. Mater. 3, 398 (1994).

    Article  CAS  Google Scholar 

  3. B. R. Stoner and J. T. Glass, Appl. Phys. Lett. 60, 698 (1992).

    Article  CAS  Google Scholar 

  4. S. D. Wolter, B. R. Stoner, J. T. Glass, P. J. Ellis, D. S. Buhaenko, C. E. Jenkins, and P. Southworth, Appl. Phys. Lett. 62, 1215–1217 (1993).

    Article  CAS  Google Scholar 

  5. L. Wang, P. Pirouz, A. Argoitia, J. S. Ma, and J. C. Angus, Appl. Phys. Lett. 63, 1336 (1993).

    Article  CAS  Google Scholar 

  6. P. C. Wang, J. T. Glass, and W. Zhu, J. Mater. Res. 8, 1773 (1993).

    Article  Google Scholar 

  7. Y. Sato, H. Fujita, T. Ando, T. Tanaka, and M. Kamo, Philos. Trans. R. Soc. London A 342, 225 (1993).

    Article  CAS  Google Scholar 

  8. J. F. Prins and H. L. Gaigher, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 561.

    Google Scholar 

  9. D. G. Jeng and H. S. Tuan, Appl. Phys. Lett. 56, 1968 (1990).

    Article  CAS  Google Scholar 

  10. L. Chang, T. S. Lin, J. L. Chen, and F. R. Chen, Appl. Phys. Lett. 62, 3444 (1993).

    Article  CAS  Google Scholar 

  11. B. R. Stoner, C. T. Kao, D. M. Malta, and R. C. Glass, Appl. Phys. Lett. 62, 2347 (1993).

    Article  CAS  Google Scholar 

  12. B. R. Stoner, S. R. Sahaida, J. P. Bade, P. Southworth, and P. J. Ellis, J. Mater. Res. 8, 1334 (1993).

    Article  CAS  Google Scholar 

  13. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, Appl. Phys. Lett. 62, 3438 (1993).

    Article  CAS  Google Scholar 

  14. X. Jiang, K. Schiffmann, A. Westpahl, and C. P. Klages, Appl. Phys. Lett. 63, 1203 (1993).

    Article  CAS  Google Scholar 

  15. R. Kohl, C. Wild, N. Herres, P. Koidl, B. R. Stoner, and J. T. Glass, Appl. Phys. Lett. 63, 1792 (1993).

    Article  CAS  Google Scholar 

  16. B. A. Fox, B. R. Stoner, D. M. Malta, P. J. Ellis, R. C. Glass, and F. R. Sivazlian, Diamond Relat. Mater. 3, 382 (1994).

    Article  CAS  Google Scholar 

  17. M. Schreck, R. Hessmer, S. Geier, B. Rauschenbach, and B. Stritzker, Diamond Relat. Mater. 3, 510 (1994).

    Article  CAS  Google Scholar 

  18. S. Yugo, T. Kanai, T. Kimura, and T. Muto, Appl. Phys. Lett. 58, 1036 (1991).

    Article  CAS  Google Scholar 

  19. B. R. Stoner, G-H. M. Ma, S. D. Wolter, and J. T. Glass, Phys. Rev. B 45, 11 067 (1992).

    Article  CAS  Google Scholar 

  20. P. D. Ownby, X. Yang, and L. Liu, J. Am. Ceram. Soc. 75, 1876 (1992).

    Article  CAS  Google Scholar 

  21. P. Pirouz, R. Chaim, U. Dahmen, and K. H. Westmacott, Acta Metall. Mater. 38, 313 (1990).

    Article  CAS  Google Scholar 

  22. H. Cerva, J. Mater. Res. 6, 2324 (1991).

    Article  CAS  Google Scholar 

  23. M. Frenklach, R. Kematick, D. Huang, W. Howard, K. E. Spear, A. W. Phelps, and R. Koba, J. Appl. Phys. 66, 395 (1989).

    Article  CAS  Google Scholar 

  24. W. Howard, D. Huang, J. Yuan, M. Frenklach, K. E. Spear, R. Koba, and A. W. Phelps, J. Appl. Phys. 68, 1247 (1990).

    Article  CAS  Google Scholar 

  25. S. R. Nutt, D. J. Smith, H. J. Kim, and R. F. Davis, Appl. Phys. Lett. 50, 203 (1987).

    Article  CAS  Google Scholar 

  26. C. J. Chen, L. Chang, F. R. Chen, and T. S. Lin, unpublished research.

  27. F. Ernst and P. Pirouz, J. Mater. Res. 4, 834 (1989).

    Article  CAS  Google Scholar 

  28. T. Tomikawa and S. Shikata, Jpn. J. Appl. Phys. A 32, 3938 (1993).

    Article  CAS  Google Scholar 

  29. C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Relat. Mater. 2, 158 (1993).

    Article  CAS  Google Scholar 

  30. Y. Tzou, unpublished.

  31. Y. Tzou, J. Bruely, F. Ernst, M. Rühle, and R. Raj, J. Mater. Res. 9, 1566 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.J., Chang, L., Lin, T.S. et al. Direct observations of heteroepitaxial diamond on a silicon(110) substrate by microwave plasma chemical vapor deposition. Journal of Materials Research 11, 1002–1010 (1996). https://doi.org/10.1557/JMR.1996.0125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0125

Navigation