Skip to main content
Log in

Processing of diamond films with azimuthal texture on silicon wafer for quantum systems

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond is a wide bandgap semiconductor possessing unique properties for applications in quantum systems and ultra-wide bandgap electronics, which require a fundamental understanding of processing of high-quality diamond crystals and textured films by microwave plasma-enhanced chemical vapor deposition (MPECVD). The approach of bias-enhanced nucleation (BEN) followed by growth is studied for processing of oriented diamond film with azimuthal texture. The magnitude of the applied electric field is shown to play an important role in processing of the highly azimuthally textured diamond film on Si (100) substrate. The X-ray diffraction pole figure, scanning electron microscopy, and Raman spectroscopy results show that an optimum applied electric field during BEN and microwave plasma conditions lead to formation of diamond film with azimuthal texture upon growth by MPECVD. These results are promising for fabricating diamond films of optimum characteristics containing nitrogen vacancy (NV) defect centers for application in quantum devices.

Graphical abstract

Scanning electron micrograph showing oriented diamond film nucleated by biased enhanced nucleation and processed using microwave plasma enhanced chemical vapor deposition on Si (100) wafer. A majority of the diamond crystal are oriented similarly in the x–y plane (azimuthal orientation) leading to high degree of pyramidal-shape texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data will be made available at reasonable request.

References

  1. D. Das, R.N. Singh, A review on nucleation, growth, and low-temperature synthesis of diamond thin films. Int. Mater. Rev. 52(2), 1–37 (2007)

    Google Scholar 

  2. S. Samantaray, R.N. Singh, A review of synthesis and properties of cubic boron nitride thin films. Int. Mater. Rev. 50(6), 313–344 (2005)

    CAS  Google Scholar 

  3. M. Jana, R.N. Singh, A review: Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int. Mater. Rev. (2017). https://doi.org/10.1080/09506608.2017.1322833

    Article  Google Scholar 

  4. J. Narayan, A. Bhaumik, Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015)

    ADS  Google Scholar 

  5. A. Bhaumik, R. Sachan, J. Narayan, Tunable charge states of nitrogen-vacancy centers in diamond for ultrafast quantum devices. Carbon 142, 662–672 (2019)

    CAS  Google Scholar 

  6. J. Narayan, A. Bhaumik, S. Gupta, P. Joshi, P. Riley, R.J. Narayan, Role of Q-carbon in nucleation and formation of continuous diamond film. Carbon 176, 558–568 (2021)

    CAS  Google Scholar 

  7. J. Wrachtrup, F. Jelezko, Processing quantum information in diamond. J. Phys. Condens. Matter. 18(21), 807–824 (2006)

    ADS  Google Scholar 

  8. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature 526(7575), 682–686 (2015)

    ADS  CAS  PubMed  Google Scholar 

  9. M. Hirose, P. Cappellaro, Coherent feedback control of a single qubit in diamond. Nature 532(7597), 77–80 (2016)

    ADS  CAS  PubMed  Google Scholar 

  10. B.M. Chang, H.H. Lin, L.J. Su, W.-D. Lin, R.J. Lin, Y.K. Tzeng, R.T. Lee, Y.C. Lee, A.L. Yu, H.C. Chang, Highly fluorescent nanodiamonds protien-functionalized for cell labelling and targeting. Adv. Funct. Mater. 23(46), 5737–5745 (2013)

    CAS  Google Scholar 

  11. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213), 644–647 (2008)

    ADS  CAS  PubMed  Google Scholar 

  12. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321), 2012–2014 (1997)

    CAS  Google Scholar 

  13. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 25012 (2011)

    Google Scholar 

  14. I. Lovchinsky, A.O. Sushkov, E. Urbach, N.P. de Leon, S. Choi, K. De Greve, R. Evans, R. Gertner, E. Bersin, C. Müller, L. McGuinness, F. Jelezko, R.L. Walsworth, H. Park, M.D. Lukin, Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351(6275), 836–841 (2016)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. C.G. Yale, B.B. Buckley, D.J. Christle, G. Burkard, F.J. Heremans, L.C. Bassett, D.D. Awschalom, All-optical control of a solid-state spin using coherent dark states. Proc. Natl. Acad. Sci. U.S.A. 110(19), 7595–7600 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau, M. Markham, D.J. Twitchen, L. Childress, R. Hanson, Heralded entanglement between solid state qubits separated by three meters. Nature 497(7447), 86–90 (2013)

    ADS  CAS  PubMed  Google Scholar 

  17. P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Room-temperature quantum bit memory exceeding one second. Science 336(6086), 1283–1286 (2012)

    ADS  CAS  PubMed  Google Scholar 

  18. A. Haque, S. Sumaiya, An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation. J. Manuf. Mater. Process. 1(6), 1–16 (2017)

    Google Scholar 

  19. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)

    ADS  CAS  Google Scholar 

  20. J.-P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20(23), 235602 (2009)

    ADS  PubMed  PubMed Central  Google Scholar 

  21. Y. Chu, N. de Leon, B. Shields, B.J.M. Hausmann, R. Evans, M.J. Burek, M. Markham, A. Stacey, A. Zibrov, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, M.D. Lukin, Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982–1986 (2014)

    ADS  CAS  PubMed  Google Scholar 

  22. N. Govindaraju, R.N. Singh, Effect of microwave plasma process conditions on nanocrystalline diamond deposition on AlGaN/GaN HEMT and Si device metallizations. Ceram. Trans. 234, 99–113 (2012)

    CAS  Google Scholar 

  23. N. Govindaraju, D. Das, R.N. Singh, P.B. Kosel, Comparison of the electrical behavior of AlN-on-diamond and AlN-on-Si MIS rectifying structures. Ceram. Trans. 235, 77–86 (2012)

    CAS  Google Scholar 

  24. N. Govindaraju, P.B. Kosel, R.N. Singh, Effect of nanocrystalline diamond deposition conditions on Si MOSFET device characteristics. Ceram. Trans. 235, 87–93 (2012)

    CAS  Google Scholar 

  25. N. Govindaraju, R.N. Singh, Processing of nanocrystalline diamond thin films for thermal management of wide bandgap semiconductor power electronics. Mater. Sci. Eng. B 176(14), 1058–1072 (2011)

    CAS  Google Scholar 

  26. N. Govindaraju, C. Kane, R.N. Singh, Processing of multilayered nanocrystalline and microcrystalline diamond thin films using Ar-rich microwave plasmas. J. Mater. Res. 26(24), 3072–3082 (2011)

    ADS  CAS  Google Scholar 

  27. N. Govindaraju, D. Das, P.B. Kosel, R.N. Singh, High-temperature dielectric behavior of nanocrystalline and microcrystalline diamond thin films. ECS Trans. 33(13), 155–168 (2010)

    CAS  Google Scholar 

  28. N. Govindaraju, D. Das, R.N. Singh, P.B. Kosel, High-temperature electrical behavior of nanocrystalline and microcrystalline diamond films. J. Mater. Res. 23(10), 2774–2786 (2008)

    ADS  CAS  Google Scholar 

  29. D. Das, R.N. Singh, S. Chattopadhyay, K.H. Chen, Thermal conductivity of diamond films deposited at low surface temperatures. J. Mater. Res. 21(9), 2379–2388 (2006)

    ADS  CAS  Google Scholar 

  30. D. Das, V. Jayaseelan, R. Ramamurti, R.S. Kukreja, L. Guo, R.N. Singh, Low surface temperature synthesis and characterization of diamond thin films. Diam. Relat. Mater. 15, 1336–1349 (2006)

    ADS  CAS  Google Scholar 

  31. B.R. Stoner, G.-H.M. Ma, S.D. Wolter, J.T. Glass, Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phy. Rev B 45(19), 11047–11084 (1992)

    ADS  Google Scholar 

  32. A. Saravanan, B.R. Huang, K.J. Sankaran, S. Kunuku, C.L. Dong, K.C. Leou, N.H. Tai, I.N. Lin, Bias-enhanced nucleation and growth processes for ultrananocrystalline diamond films in Ar/CH4 plasma and their enhanced plasma illumination properties. ACS Appl. Mater. Interfaces 6(13), 10566–10575 (2014)

    CAS  PubMed  Google Scholar 

  33. K. Janischowsky, W. Ebert, E. Kohn, Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diam. Relat. Mater. 12, 336–339 (2003)

    ADS  CAS  Google Scholar 

  34. W. Kulisch, L. Ackerman, B. Sobisch, On the mechanisms of bias enhanced nucleation of diamond. Phys. Status Solidi (a) 154, 155–174 (1996)

    ADS  CAS  Google Scholar 

  35. S. Yugo, T. Kanai, T. Kimura, T. Muto, Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Appl. Phys. Lett. 58(10), 1036–1038 (1991)

    ADS  CAS  Google Scholar 

  36. N. Ishigaki, S. Yugo, Mechanism of diamond epitaxial growth on Silicon. Diam. Relat. Mater. 9, 1646–1649 (2000)

    ADS  CAS  Google Scholar 

  37. X. Jiang, K. Schiffmann, A. Westphal, C.P. Klages, Atomic force microscopic study of heteroepitaxial diamond nucleation on (100) silicon. Appl. Phy. Lett. 63(9), 1203–1205 (1993)

    ADS  CAS  Google Scholar 

  38. Y.K. Kim, K.H. Lee, M.J. Lee, J.Y. Lee, The nucleation of highly oriented diamond on silicon using a negative bias. Thin Solid Films 341, 211–215 (1999)

    ADS  CAS  Google Scholar 

  39. B. Golding, C. Bednarski-Meinke, Z. Dai, Diamond heteroepitaxy: Pattern formation and mechanisms. Diam. Relat. Mater. 13, 545–551 (2004)

    ADS  CAS  Google Scholar 

  40. K.L. Chopra, Thin Film Phenomena, 3rd edn. (McGrow Hill, New York, 1969)

    Google Scholar 

  41. G. Chikvaidze, N. Mironova-Ulmane, A. Plaude, O. Sergeev, Investigation of silicon carbide polytypes by Raman spectroscopy. Latvian J. Phys. Tech. Sci. (2014). https://doi.org/10.2478/lpts-2014-0019

    Article  Google Scholar 

  42. S. Mandal, Nucleation of diamond films on heterogeneous substrates: a review. RSC Adv. 11, 10159 (2021). https://doi.org/10.1039/d1ra00397f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. S.A. Linnik, A.V. Gaydaychuk, A.S. Mitulinsky, S.P. Zenkin, Radio frequency bias enhanced nucleation of CVD diamond. Mater. Lett. 324, 132670 (2022)

    CAS  Google Scholar 

  44. M. Schreck, S. Gsell, R. Brescia, M. Fischer, Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 7(1), 44462 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. J.-C. Arnault, S. Saada, V. Ralchenko, Chemical vapor deposition single-crystal diamond: a review. Phys. Status Solidi RRL 16, 2100354 (2022). https://doi.org/10.1002/pssr.202100354

    Article  CAS  Google Scholar 

  46. W. Jaeger, Advanced and in situ transmission electron microscopy of diamond: A review. In: Semiconductors and Semimetals, Volume 104, 31 (2021), ISSN 0080–8784 https://doi.org/10.1016/bs.semsem.2020.08.003

  47. V.S. Jayaseelan, R.N. Singh, Diamond nucleation in carbon films on Si wafer during microwave plasma enhanced chemical vapor deposition for quantum applications. J. Appl. Phys. 133(15), 155302 (2023)

    ADS  CAS  Google Scholar 

  48. Jean-Charles Arnault, and Hugues Girard, “Diamond Nucleation and Seeding Techniques: Two Complementary Strategies for the Growth of Ultra-thin Diamond Films”, Oliver Williams. Nanodiamond, chapter 10 (31), RSC Nanoscience & Nanotechnology, pp.221–252, 2014, Nanoscience & Nanotechnology Series., 978–1–84973–639–8. https://doi.org/10.1039/9781849737616-00221. cea-01831889

  49. G.F. Harrington, J. Santiso, Back-to-basics tutorial: X-ray diffraction of thin films. J. Electroceram. 47(4), 141–63 (2021)

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the National Science Foundation under NSF Award Numbers: 2103058 and 2126275. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not reflect views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

VSJ: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Writing - first draft (equal). RNS: Conceptualization; Formal analysis (equal); Funding acquisition; Investigation (equal); Methodology (equal); Project administration; Resources; Supervision; Validation (equal); Writing - final draft. Funding: This material is based on work supported by the National Science Foundation under NSF Award Numbers: 2103058 and 2126275. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect views of the National Science Foundation.

Corresponding author

Correspondence to Raj N. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaseelan, V.S., Singh, R.N. Processing of diamond films with azimuthal texture on silicon wafer for quantum systems. Journal of Materials Research 39, 825–835 (2024). https://doi.org/10.1557/s43578-023-01273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01273-6

Keywords

Navigation