Skip to main content
Log in

Residual strain energy in composites containing particles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Selsing’s formula for radial tension at the particle-matrix interface is extended into a general formula which includes the effects of the amount of dispersed particles. A relationship is derived between individual volumes of strained unit cells in the crystal lattices of the particles and of the surrounding matrix. These relationships are used to predict the effect of the particles (2H−TiB2, 2H−ZrB2, and t−WB) on their unit cells and on the unit cell of the surrounding 6H–SiC matrix. The precision of these predictions was 7.1% or better. Hence, in principle, it is possible to investigate the distributions of residual bulk stress/strain. Estimates of characterizing values of the three composite systems are attempted on the rough basis of the elastic constants of the SiC matrix, confirming the physical validity of this approach as a first approximation. Further, the residual bulk strain energies of the particles and the matrix are discussed in connection with the elastic term involved in the fracture energy of such composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. McMurtry, W. D. G. Boecker, S. G. Seshadri, J. S. Zanghi, and J. E. Garnier, Am. Ceram. Soc. Bull. 66 (2), 325–329 (1987).

    Google Scholar 

  2. M. G. Jenkins, J. A. Salem, and S. G. Seshadri, J. Comp. Mater. 23 (1), 77–91 (1989).

    Article  CAS  Google Scholar 

  3. M. Taya, S. Hayashi, A. S. Kobayashi, and H. S. Yoon, J. Am. Ceram. Soc. 73 (5), 1382–1391 (1990).

    Article  CAS  Google Scholar 

  4. S. Kohsaka and K. Koga, in Fine Ceramics (1990), Proc. of 8th Symp. on Basic Technology for Future Industries, Japan (1990), pp. 59–69.

  5. T. Mizutani and A. Tsuge, J. Ceram. Soc. Jpn. 100 (8), 991–997 (1992).

    Article  CAS  Google Scholar 

  6. A. G. Evans, Philos. Mag. 22, 1327–1344 (1972).

    Article  Google Scholar 

  7. A. G. Evans and T. G. Langdon, Prog. Mater. Sci. 21 (3–4), 171–441 (1976).

    Article  CAS  Google Scholar 

  8. D. J. Green, P. S. Nicholson, and J. D. Embury, J. Mater. Sci. 14 (7), 1657–1661 (1979).

    Article  Google Scholar 

  9. D. J. Green, J. Am. Ceram. Soc. 66 (1), c.4 (1983).

    Article  Google Scholar 

  10. B. R. Lawn, J. Am. Ceram. Soc. 66 (2), 83–91 (1983).

    Article  CAS  Google Scholar 

  11. K. T. Faber and A. G. Evans, Acta Metall. 31 (4), 565–576 (1983).

    Article  Google Scholar 

  12. G. C. Wei and P. F. Becher, J. Am. Ceram. Soc. 67 (8), 571–574 (1984).

    Article  CAS  Google Scholar 

  13. B. Budiansky, J. C. Amazigo, and A. G. Evans, J. Mech. Phys. Solids 36, 167–187 (1988).

    Article  Google Scholar 

  14. D. J. Magley, R. A. Winholtz, and K. T. Faber, J. Am. Ceram. Soc. 73 (6), 1641–1644 (1990).

    Article  CAS  Google Scholar 

  15. W. H. Gu, K. T. Faber, and R. W. Steinbrech, Acta Metall. 40 (11), 3121–3128 (1992).

    Article  CAS  Google Scholar 

  16. S. Shibata, M. Taya, T. Mori, and T. Mura, Acta Metall. 40 (11), 3141–3148 (1992).

    Article  CAS  Google Scholar 

  17. T. Mizutani and A. Tsuge, “Residual Strain in SiC Composites Containing Particulate MeB2,” Adv. Comp. Mater. 5 (3) (in press, 1995).

  18. D. Weyl, Ber.deut.keram.Ges. 36 (10), 319–324 (1959); Ceram. Abstr., 1960, June, p. 141j.

    Google Scholar 

  19. J. D. Eshelby, Proc. Royal Soc. A252, 561–569 (1959).

    Google Scholar 

  20. J. Selsing, J. Am. Ceram. Soc. 44 (8) 419 (1961).

    Article  Google Scholar 

  21. T. Mori and K. Tanaka, Acta Metall. 21 (5), 571–574 (1973).

    Article  Google Scholar 

  22. J. Prescott, Applied Elasticity (Longmans, Green and Co., London, 1924), pp. 326–329.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd English ed. (Pergamon Press, Oxford, 1970; translated by J.B. Sykes and W. H. Reid from Russian, Volume 7, Course of Theoretical Physics, Moscow, USSR, 1953), pp. 20–21.

    Google Scholar 

  24. Y. Murata and R. H. Smoak, Proc. Int. Symp. of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics 1978, Japan, pp. 382–399.

    Google Scholar 

  25. N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons, Inc., New York, 1966).

    Google Scholar 

  26. S. Chatteriee and B. Price, Regression Analysis by Example (John Wiley & Sons, Inc., New York, 1966).

    Google Scholar 

  27. Allen L. Edwards, Introduction to Linear Regression and Correlation (W. H. Freeman and Co., San Francisco, CA, 1984).

    Google Scholar 

  28. J. Mandel, J. Quality Technol. 16 (1), 1–13 (1984).

    Article  Google Scholar 

  29. R. A. Giddings, C. A. Johnson, S. Prochazka, and R. J. Charles, GE Company, Corporate R&D, “Fabrication and Properties of Sintered SiC,” Technical Information Series, Report No. April (1975).

  30. T. D. Gulden, J. Am. Ceram. Soc. 52 (11), 273–278 (1969).

    Article  Google Scholar 

  31. J. A. Coppola, M. Srinivasan, K. T. Faber, and R. H. Smoak, Proc. Int. Symp. of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, 1978, Japan, pp. 400–417.

  32. R. D. Carnahan, J. Am. Ceram. Soc. 51 (4), 223–224 (1968).

    Article  CAS  Google Scholar 

  33. R. B. Kotelnikov, S. N. Bashlykov, Z. G. Galiakbarov, and A. I. Kashtanov, Handbook of High Melting Point Materials (Metallugiya Press, Moscow, USSR 1969).

    Google Scholar 

  34. S. M. Lang, “Properties of High Temperature Ceramics and Cermets: Elasticity and Density at Room Temperature,” National Bureau of Standards Monograph 6 (March 1, 1960).

  35. MCIC Report HB-07-Vol. 2/(Reprinted in July 1987) “Engineering Property Data on Selected Ceramics, Carbides,” Metals & Ceramics Information Center, Battelle, Columbus, OH.

  36. T. Mizutani, M. Hayashi, and A. Tsuge, J. Ceram. Soc. Jpn., Int. Ed. 96, 211–216 (1988).

    Article  CAS  Google Scholar 

  37. J. J. Petrovic, J. V. Milewski, D. L. Rohr, and R. D. Gac, J. Mater. Sci. 20, 1167–1177 (1985).

    Article  Google Scholar 

  38. Z. Li and R. C. Bradt, J. Am. Ceram. Soc. 69 (12), 863–866 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, T. Residual strain energy in composites containing particles. Journal of Materials Research 11, 483–494 (1996). https://doi.org/10.1557/JMR.1996.0058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0058

Navigation