Skip to main content
Log in

Synthesis of α–Fe2O3 particle/oligomer hybrid material

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A nanocrystalline α–Fe2O3 particle/oligomer hybrid can be synthesized by polymerization of iron (III) 3-allylacetylacetonate (IAA) followed by in situ hydrolysis. The polymerization of IAA was dependent upon the polymerization temperature and solvent. GPC measurement showed that the polymerization degree of the IAA oligomer ranged from ∼3 to ∼6. The magnetic particle/oligomer hybrid was synthesized by hydrolysis of the IAA oligomer under a neutral or alkaline condition. Crystalline particles from 10 to 40 nm were finely dispersed in the oligomeric matrix, depending upon the hydrolysis conditions. The nanocrystalline particles below 10 nm in diameter were identified to be α−Fe2O3 by electron diffraction. The nanosized α−Fe2O3/oligomer hybrid was found to show superparamagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schmidt, in Better Ceramics Through Chemistry, edited by C. J. Brinker, D. E. Clark, and D.R. Ulrich Mater. Res. Soc. Symp. Proc. 32 (Elsevier Science Publishing, New York, 1984), p. 927.

  2. H. Schmidt, J. Non-Cryst. Solids 73, 681 (1985).

    Article  CAS  Google Scholar 

  3. G. L. Wilkes, B. Orler, and H-H. Huang, Polym. Prep. 26, 300 (1985).

    CAS  Google Scholar 

  4. H. Schmidt, Chemical Processing of Advanced Materials, edited by L. L. Hench and J. K. West (John Wiley & Sons, New York, 1992), p. 727.

    Google Scholar 

  5. C. Sanchez and M. Inn, J. Non-Cryst. Solids 147&148, 1 (1992).

    Article  Google Scholar 

  6. B. R. Pieters, R.A. Williams, and C. Webb, in Colloid and Surface Engineering: Applications in the Process Industry, edited by R. A. Williams (Butterworth, Oxford, 1992), p. 248.

    Google Scholar 

  7. L. Nixon, C.A. Koval, D.A. Noble, and G. S. Slaff, Chem. Mater. 4, 117 (1992).

    Article  CAS  Google Scholar 

  8. J. Ugelstad, A. Berge, T. Ellingsen, O. Aune, L. Kilass, T. N. Nilsen, R. Schmid. P. Stenstad, S. Funderud, G. Kvalheim, K. Nustad, T. Lea, F. Vartdal, and H. Danielsen, Makromol. Chem. Macromol. Symp. 17, 177 (1988).

    Article  CAS  Google Scholar 

  9. H. Okada, K. Sakata, and T. Kunitake, Chem. Mater. 6, 89 (1990).

    Article  Google Scholar 

  10. M. T. Nguyen and A. F. Diaz, Adv. Mater. 6, 858 (1994).

    Article  CAS  Google Scholar 

  11. R. B. Davis and P. Hurd, J. Am. Chem. Soc. 77, 3284 (1955).

    Article  CAS  Google Scholar 

  12. H. A. Tayim and M. Sabri, Inorg. Nucl. Chem. Lett. 9, 753 (1973).

    Article  CAS  Google Scholar 

  13. C. E. Schidknecht, Allyl Compounds and Their Polymers (Wiley-Interscience, New York, 1973).

    Google Scholar 

  14. P. R. Singh and R. Sahai, Aust. J. Chem. 22, 1169 (1969).

    Article  CAS  Google Scholar 

  15. S. L. Davydova and N. L. Plate, Coord. Chem. Rev. 16, 195 (1975).

    Article  CAS  Google Scholar 

  16. K. Higuchi, S. Naka, and S. Hirano, Adv. Ceram. Mater. 1, 104 (1986).

    CAS  Google Scholar 

  17. T. Takada, Denkikagaku 37, 328 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yogo, T., Nakamura, T., Kikuta, Ki. et al. Synthesis of α–Fe2O3 particle/oligomer hybrid material. Journal of Materials Research 11, 475–482 (1996). https://doi.org/10.1557/JMR.1996.0057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0057

Navigation