Skip to main content
Log in

Mechanical properties of nanocrystalline copper produced by solution-phase synthesis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline copper powder was produced by a NaBH4 reduction of CuCl in a simple solution phase room temperature reaction. Uniaxial hot pressing in a closed tungsten die was used to compact powder into dense specimens. Samples were analyzed by x-ray diffraction, precision densitometry, electron microscopy, energy dispersive x-ray analysis, and selected area diffraction. Mechanical properties of the consolidated samples were determined by microhardness measurements, three-point bending of rectangular specimens, and compression tests. Yield strength measured for nanocrystalline Cu in the present work was over two times that reported in literature for Cu with comparable grain size and over five times that of conventional Cu. Restricted grain growth observed in the hot-pressed samples and improved mechanical properties are attributed to the presence of boron. A unique method of obtaining homogeneous in situ nanosized reinforcements to strengthen the grain boundaries in nanocrystalline materials is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Birringer and H. Gleiter, in Advances in Material Science, Encyclopaedia of Mater. Sci. Engg., edited by R. W. Cahn (Pergamon Press, Oxford, 1988), p. 339.

    Google Scholar 

  2. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  3. C. Suryanarayana and F. H. Froes, Metall. Trans. A 23A, 1071 (1992).

    Article  CAS  Google Scholar 

  4. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, Appl. Phys. Lett. 50, 472 (1987).

    Article  CAS  Google Scholar 

  5. R. W. Siegel, Mater. Sci. Engg. B B19, 37 (1993).

    Article  CAS  Google Scholar 

  6. J. Karch, R. Birringer, and H. Gleiter, Nature (London) 330, 556 (1987).

    Article  CAS  Google Scholar 

  7. R. S. Averback, H. J. Hofler, and R. Tao, Mater. Sci. Engg. A A166, 167 (1993).

    Google Scholar 

  8. H. Hahn and R. S. Averback, J. Appl. Phys. 67 (2), 1113 (1990).

    Article  CAS  Google Scholar 

  9. G. McMahon and U. Erb, Microstructural Science 17, 447 (1989).

    Google Scholar 

  10. C. Cheung, G. Palumbo, and U. Erb, Scripta Metall. 31 (6), 735 (1994).

    Article  CAS  Google Scholar 

  11. J. E. Bonevich and L. D. Marks, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G. J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 3.

  12. M. J. Readey, R-R. Lee, J. W. Halloran, and A. H. Heuer, J. Am. Ceram. Soc. 73 (6), 1499 (1990).

    Article  CAS  Google Scholar 

  13. M. J. Mayo, D. C. Hague, and D-J. Chen, Mater. Sci. Engg. A A166, 145 (1993).

    Article  CAS  Google Scholar 

  14. H-Y. Lee, W. Riehemann, and B. L. Mordike, J. Euro. Ceram. Soc. 10, 245 (1992).

    Article  CAS  Google Scholar 

  15. Y. C. Zhou and M. N. Rahaman, J. Mater. Res. 8, 1680 (1993).

    Article  CAS  Google Scholar 

  16. V. G. Gryaznov and L. I. Trusov, Prog. Mater. Sci. 37, 289 (1993).

    Article  CAS  Google Scholar 

  17. R. Suryanarayanan, C. A. Frey, S. M. L. Sastry, B. E. Waller, and W. E. Buhro, J. Mater. Res. 449–457 11, (1996).

    Google Scholar 

  18. D. F. Shriver, The Manipulation of Air-Sensitive Compounds (John Wiley, New York, 1986).

    Google Scholar 

  19. Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski et al. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 350.

  20. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  21. N. Hansen and B. Ralph, Acta Metall. 30, 411 (1982).

    Article  CAS  Google Scholar 

  22. A. S. Helle, K. E. Easterling, and M. F. Ashby, Acta Metall. 33, 2163 (1985).

    Article  CAS  Google Scholar 

  23. R. Suryanarayanan and S. M. L. Sastry, unpublished research.

  24. J. L. Shi, J. H. Gao, Z. X. Lin, and D. S. Yan, J. Mater. Sci. 28 (2), 342 (1993).

    Article  CAS  Google Scholar 

  25. F. F. Lange, J. Am. Ceram. Soc. 67 (2), 83 (1984).

    Article  CAS  Google Scholar 

  26. D. E. Alman, K. G. Shaw, N. S. Stollof, and K. Rajan, Mater. Sci. Engg. A A155, 85 (1992).

    Article  CAS  Google Scholar 

  27. M. J. Mayo and D. J. Chen, in Nanostructured Materials: Synthesis, Properties, and Uses, edited by A. S. Edelstien and R. C. Cammarata (Institute of Physics, Bristol, U.K., 1994).

    Google Scholar 

  28. M. Jain and T. Christman, Acta Metall. 42 (6), 1901 (1994).

    Article  CAS  Google Scholar 

  29. R. M. German, Powder Metallurgy Science (MPIF, New Jersey, 1985), p. 121.

    Google Scholar 

  30. V. I. Novikov, V. Y. Ganelin, L. I. Trusov, V. N. Lapovok, I. A. Shutov, E. N. Yakovlev, L. G. Khvostantsev, T. P. Galieshvili, and N. D. Kvataya, Phys. Metals (U.S.S.R.) 8, 111 (1986).

    CAS  Google Scholar 

  31. T. Mutschele and R. Kirchheim, Scripta Metall. 21, 135 (1987).

    Article  Google Scholar 

  32. H. Hahn, H. J. Hofler, and R. S. Averback, Proceedings of DIMETA-88: Int. Conf. on Diffusion in Metals and Alloys, Balantonfured, Hungary (1988).

    Google Scholar 

  33. I. Higashi, Y. Takahashi, and T. Atoda, J. Less-Comm. Metals 37, 199 (1974).

    Article  CAS  Google Scholar 

  34. CRC Handbook of Chemistry and Physics, 75th ed., edited by D. R. Lide (CRC Press, Boca Raton, FL, 1994).

  35. V. Y. Gertsman and R. Birringer, Scripta Metall. 30, 577 (1994).

    Article  CAS  Google Scholar 

  36. C. T. Liu, C. L. White, and J.A. Horton, Acta Metall. 33, 1587 (1985).

    Article  Google Scholar 

  37. M. K. Miller and J. A. Horton, J. de Phys. C7, 263 (1986).

    Google Scholar 

  38. W. Wang, S. Zhang, and X. He, Acta Metall. Mater. 43 (4), 1693 (1995).

    Article  CAS  Google Scholar 

  39. K. T. Aust, R. E. Hanneman, P. Niessen, and J. H. Westbrook, Acta Metall. 16, 291 (1968).

    Article  CAS  Google Scholar 

  40. L. Karlsson and H. Norden, Acta Metall. 36, 35 (1988).

    Article  CAS  Google Scholar 

  41. H. J. Hofler, R. S. Averback, and H. Gleiter, Philos. Mag. Lett. 68 (2), 99 (1993).

    Article  CAS  Google Scholar 

  42. J. R. Rice, The Effect of Hydrogen on the Behavior of Metals (AIME, New York, 1976), p. 455.

    Google Scholar 

  43. I. M. Robertson, T. C. Lee, R. Subramanian, and H. K. Birnbaum, in Structure and Properties of Interfaces in Materials, edited by W. A. T. Clark, U. Dahmen, and C. L. Briant (Mater Res. Soc. Symp. Proc. 238, Pittsburgh, PA, 1992), p. 357.

  44. T. C. Lee, I. M. Robertson, and H. K. Birnbaum, Acta Metall. 40 (10), 2569 (1992).

    Article  CAS  Google Scholar 

  45. E. D. Hondros and M. P. Seah, Physical Metallurgy, edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1983), p. 855.

    Google Scholar 

  46. R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov, and B. Baudelet, Acta Metall. 42 (7), 2467 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suryanarayanan, R., Frey, C.A., Sastry, S.M.L. et al. Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. Journal of Materials Research 11, 439–448 (1996). https://doi.org/10.1557/JMR.1996.0053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0053

Navigation