Skip to main content
Log in

Structural and microstructural features of pyrite FeS2−x thin films obtained by thermal sulfuration of iron

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural and microstructural properties of synthetic thin films of pyrite (FeS2−x), prepared by thermal sulfuration of iron layers, were investigated from Rietveld refinements of x-ray diffraction data, collected by step/scan mode. From this refinement lattice constant, a, and sulfur position parameter, u, nearest neighbor Fe–S and S–S bond distances and tetrahedral and octahedral bond angles have been determined. Moreover, sulfur deficit in the samples, surface and volume-weighted crystallite size and microstrains were also obtained. From these data, the influence of temperature and time of sulfuration and sulfur pressure on their structural and microstructural properties has been established. Stoichiometric pyrite thin films are obtained by sulfurating the iron films at low temperatures (Ts ∼ 600–700 K) during short times (ts ∼ 0.5–2 h). These experimental conditions yield films with the highest a, u, Fe–S bond distance, and microstrains, as well as S/Fe ratios about 2.00, i.e., null sulfur vacancies, the smallest S–S bond distances, and crystallite size. Finally, the possible influence of these structural and microstructural characteristics on some physical properties (optical absorption, electrical resistivity …) of the films is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, Ch. Höpfner, and H. Tributsch, Solar Energy Mater. Solar Cell 29, 289 (1993).

    Article  CAS  Google Scholar 

  2. S. S. Seehra, P. A. Montano, M. S. Seehra, and S. K. Sen, J. Mater. Sci. 14, 2761 (1979).

    Article  CAS  Google Scholar 

  3. A. M. Karguppikar and A. G. Vedeshwar, Phys. Status Solidi A 95, 717 (1986).

    Article  CAS  Google Scholar 

  4. G. Chatzitheodorou, S. Fiechter, Konenkamp, M. Kunst, W. Jaegermann, and H. Tributsch, Mater. Res. Bull. XXI, 1481 (1986).

    Article  Google Scholar 

  5. G. Smestad, A. Da Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Mezziani, and M. Birkholz, Solar Energy Mater. 18, 299 (1989).

    Article  CAS  Google Scholar 

  6. A. K. Abass, Z. A. Ahmed, and R. M. Samuel Phys. Status Solidi A 120, 247 (1990).

    Article  CAS  Google Scholar 

  7. C. de las Heras and C. Sánchez, Thin Solid Films 199, 259 (1991).

    Article  Google Scholar 

  8. C. Höpfner, A. Ennaoui, D. Lichtenberger, M. Birkholz, G. Smestad, S. Fiechter, and H. Tributsch, Proc. 10th EEC PVSEC, Lisbon, 1991 (Kluwer, Dordrecht, The Netherlands, 1991), p. 594.

  9. G. Willeke, R. Dasbach, B. Sailer, and E. Bucher, Thin Solid Films 213, 271 (1992).

    Article  CAS  Google Scholar 

  10. S. Bausch, B. Sailer, H. Keppner, G. Willeke, E. Bucher, and G. Frommeyer, Appl. Phys. Lett. 57, 25 (1990).

    Article  CAS  Google Scholar 

  11. I. J. Ferrer and C. Sanchez, J. Appl. Phys. 70, 2641 (1991).

    Article  CAS  Google Scholar 

  12. G. Pimenta and W. Kautek, Thin Solid Films 238, 213 (1994); G. Pimenta, W. Schröder, and W. Kautek, Ber. Bunsenges Phys. Chem. 95, 1470 (1991).

    Article  CAS  Google Scholar 

  13. G. Smestad, A. Ennaoui, S. Fiechter, H. Tributsch, W. K. Höfmann, M. Birkholz, and W. Kautek, Solar Energy Mater. 20, 149 (1990).

    Article  CAS  Google Scholar 

  14. R. W. G. Wyckoff, Crystal Structures (John Wiley & Sons Interscience Publishers, New York, 1963), Vol. 1.

  15. E. H. Kraus and I.D. Scott, Z. Kristallogr. 44, 153 (1908).

    Google Scholar 

  16. R. Juza, W. Biltz, and K. Meisel, Z. Anorg. Allg. Chem. 205, 273 (1932).

    Article  CAS  Google Scholar 

  17. C. T. Anderson, J. Am. Chem. Soc. 59, 486 (1937).

    Article  CAS  Google Scholar 

  18. F. G. Smith, Am. Mineral. 27, 1 (1942).

    CAS  Google Scholar 

  19. M. Birkholz, S. Fiechter, A. Hartmann, and H. Tributsch, Phys. Rev. B 43, 11 926 (1991).

    Article  CAS  Google Scholar 

  20. S. Fiechter, M. Birkholz, A. Hartman, P. Dulski, M. Giersig, H. Tributsch, and R. J. D. Tilley, J. Mater. Res. 7, 1829 (1992).

    Article  CAS  Google Scholar 

  21. A. Sakthivel and R. A. Young, User Guide to Programs DBWS-9006 and DBWS-9006PC for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns (School of Physics, Georgia Institute of Technology, Atlanta, 1991).

    Google Scholar 

  22. G. Caglioti, A. Paoletti, and F. P. Ricci, Nucl. Instrum. 3, 223 (1958).

    Article  CAS  Google Scholar 

  23. R. A. Young and D. B. Wiles, J. Appl. Crystallogr. 15, 430 (1982).

    Article  CAS  Google Scholar 

  24. J. E. Post and D. L. Bish, in Modern Powder Diffraction, edited by D. L. Bish and J.E. Post (The Mineralogical Society of America, Washington, DC 1989), Chap. 9.

  25. The Rietveld Method, International Union of Crystallography, edited by R. A. Young (Oxford University Press, Oxford, 1993), 298 pp.

  26. H. P. Klug and L. E. Alexander, in X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley Interscience, New York, 1974), pp. 618–708.

    Google Scholar 

  27. B. Warren and B. L. Averbach, J. Appl. Phys. 21, 595 (1950).

    Article  CAS  Google Scholar 

  28. B. E. Warren and B. L. Averbach, J. Appl. Phys. 23, 1059 (1952).

    Article  CAS  Google Scholar 

  29. S. Enzo, G. Fagherazzi, A. Benedetti, and S. Polizzi, J. Appl. Crystallogr. 21, 536 (1988).

    Article  Google Scholar 

  30. S. L. Finklea, L. Cathey, and E. L. Amma, Acta Crystallogr. A 32, 529 (1976).

    Article  Google Scholar 

  31. S. L. Stevens, M. L. de Lucia, and P. Coppens, Inorg. Chem. 19, 813 (1979).

    Article  Google Scholar 

  32. P. Bayliss, Am. Mineral. 62, 1168 (1977).

    CAS  Google Scholar 

  33. G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 2993 (1970).

    Article  CAS  Google Scholar 

  34. G. Will, J. Lauterjung, H. Schmitz, and E. Hinze, in High Pressure in Science and Technology, edited by C. Homan, R. K. MacCrone, and E. Whalley (Mater. Res. Soc. Symp. Proc. 22, Elsevier Science Publishing, New York, 1984), p. 49.

    Google Scholar 

  35. R. S. B. Chrystall, Trans. Faraday Soc. 61, 1811 (1965).

    Article  CAS  Google Scholar 

  36. R. S. Krishnan, Thermal Expansion of Crystals (Pergamon Press, New York, 1993).

    Google Scholar 

  37. I. J. Ferrer C. de las Heras, and C. Sanchez, J. Phys. Cond. Matt. (in press).

  38. Y. Zeng and N. A. W. Holzwarth, Phys. Rev. B 50, 8214 (1994).

    Article  CAS  Google Scholar 

  39. C. de las Heras, I.J. Ferrer, and C. Sanchez, unpublished.

  40. C. de las Heras, I.J. Ferrer, and C. Sanchez, J. Appl. Phys. 74, 4551 (1993).

    Article  Google Scholar 

  41. A. K. Abbas, Z. A. Ahmed, and R. E. Tahir, Phys. Status Solidi A 97, 243 (1986); G. Smestad, A. da Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Mezziani, and M. Birkholz, Solar Energy Mater. 18, 299 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de las Heras, C., de Vidales, J.L.M., Ferrer, I.J. et al. Structural and microstructural features of pyrite FeS2−x thin films obtained by thermal sulfuration of iron. Journal of Materials Research 11, 211–220 (1996). https://doi.org/10.1557/JMR.1996.0026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0026

Navigation