Skip to main content
Log in

Evolution of the Structural and Optical Properties of PbS Films upon Doping with Iron(II)

  • ON THE 100th ANNIVERSARY OF URAL FEDERAL UNIVERSITY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Polycrystalline films of PbS:Fe are obtained via hydrochemical deposition from an ammonia-citrate bath containing 10−5 to 7 × 10−3 M of FeCl2 doping additive. The films’ morphology is studied along with their structural and optical properties. An increase in the lattice parameter of PbS doped up to 5 × 10‒3 M testifies to the interstitial position of Fe2+ ions, while a subsequent reduction in the lattice parameter is due to some of the lead ions in the PbS crystal lattice being replaced with iron ions of a smaller radius. Doping with iron ions produces impurity absorption bands in the optical absorption spectra of PbS:Fe films. Rearrangement of the zone structure of lead sulfide near the edge of the band gap is observed in a film obtained from a solution containing 5 × 10−3 M FeCl2. The change in the zone structure is due to the lead ions in the PbS lattice being replaced with iron ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Saran and R. J. Curry, Nat. Photon. 10, 81 (2016). https://doi.org/10.1038/nphoton.2015.280

    Article  CAS  Google Scholar 

  2. R. J. Keyes, Optical and Infrared Detectors,Topics in Applied Physics (Springer, New York, 1980). https://doi.org/10.1007/3-540-10176-4

    Book  Google Scholar 

  3. H. Zogg, K. Alchalabi, and D. Zimin, Def. Sci. J. 51, 53 (2001). https://doi.org/10.14429/dsj.51.2205

    Article  CAS  Google Scholar 

  4. H. Preier, Semicond. Sci. Technol. 5 (3S), S12 (1990). https://doi.org/10.1088/0268-1242/5/3S/004

    Article  Google Scholar 

  5. S. Kouissa, A. Djemel, M. S. Aida, and M. A. Djouadi, Sens. Transducers 193 (10), 106 (2015). https://www.sensorsportal.com/HTML/DIGEST/P_2743.htm.

  6. V. F. Markov and L. N. Maskaeva, Tekhnosfer. Bezopasn. 1, 32 (2015).

    Google Scholar 

  7. V. I. Kaidanov and Yu. I. Ravich, Sov. Phys. Usp. 28, 31 (1985).

    Article  Google Scholar 

  8. R. Thielsch, T. Bohme, R. Reiche, et al., Nanostruct. Mater. 10, 131 (1998). https://doi.org/10.1016/S0965-9773(98)00056-7

    Article  CAS  Google Scholar 

  9. E. Yucel and Y. Yucel, Optik 142, 82 (2017). https://doi.org/10.1016/j.ijleo.2017.04.104

    Article  CAS  Google Scholar 

  10. M. S. Ravishankar, A. R. Balu, K. Usharani, et al., Optik 134, 121 (2017). https://doi.org/10.1016/j.ijleo.2017.01.010

    Article  CAS  Google Scholar 

  11. N. Rakesh, K. Joshi, A. Kanjilal, and H. K. Sehgal, Nanotechnology 14, 809 (2003). https://doi.org/10.1088/0957-4484/14/7/320

    Article  Google Scholar 

  12. E. Yucel, Ceram. Int. 43, 407 (2017). https://doi.org/10.1016/j.ceramint.2016.09.173

    Article  CAS  Google Scholar 

  13. A. Gassoumi, J. Mol. Struct. 1116, 67 (2016). https://doi.org/10.1016/j.molstruc.2016.03.007

    Article  CAS  Google Scholar 

  14. O. P. Moreno, R. G. Perez, M. C. Portillo, et al., Optik 127, 10273 (2016). https://doi.org/10.1016/j.ijleo.2016.08.036

    Article  CAS  Google Scholar 

  15. I. V. Vaganova, L. N. Maskaeva, V. F. Markov, et al., Nanosyst.: Phys., Chem., Math. 9, 811 (2018). https://doi.org/10.17586/2220-8054-2018-9-6-811-822

    Article  CAS  Google Scholar 

  16. Z. Azadi Motlagh and M. E. Azim Araghi, Semicond. Sci. Technol. 31, 025017 (2016). https://doi.org/10.5923/j.ajcmp.20150502.02

    Article  Google Scholar 

  17. L. N. Maskaeva, V. F. Markov, E. V. Mostovshchikova, et al., J. Alloys Compd. 766, 402 (2018). https://doi.org/10.1016/j.jallcom.2018.06.263

    Article  CAS  Google Scholar 

  18. C. Sifi, M. Sliman, and H. Merad, IOP Conf. Ser.: Mater. Sci. Eng. 28, 012031 (2012). https://doi.org/10.1088/1757-899X/28/1/012031

  19. V. S. Urusov, Isomorphic Miscibility Theory (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. W. Hume-Rothery, Elements of Structural Metallurgy, Inst. Met. Monograph and Report Series, No. 26 (Inst. Met., London, 1961).

  21. V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Modeling and Experiment (UrO RAN, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  22. V. F. Markov and L. N. Maskaeva, Russ. Chem. Bull. 63, 1523 (2014). https://doi.org/10.1007/s11172-014-0630-7

    Article  CAS  Google Scholar 

  23. V. F. Markov and L. N. Maskaeva, Russ. J. Phys. Chem. A 84, 1288 (2010). https://doi.org/10.1134/S0036024410080030

    Article  CAS  Google Scholar 

  24. J. Rodriguez-Carvajal, Phys. B (Amsterdam, Neth.). 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

  25. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  26. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  27. W. W. Scanlon, J. Phys. Chem. Solids 8, 423 (1959). https://doi.org/10.1016/0022-3697(59)90379-8

    Article  CAS  Google Scholar 

  28. H. Kanazawa and S. Adachi, J. Appl. Phys. 83, 5997 (1998). https://doi.org/10.1063/1.367466

    Article  CAS  Google Scholar 

  29. J. I. Pankove, Fundamental Absorption,Optical Processes in Semiconductors (Courier Dover, New York, 1971), p. 34.

    Google Scholar 

Download references

Funding

This work was performed as part of RF Government Program 211, project no. 02.A03.21.0006; and by the Mikheev Institute of Metal Physics as part of State Task no. AAAA-A18-118020190112-8 (topic “Stream”) from the Russian Federal Agency for Scientific Organizations. It was supported by the Russian Foundation for Basic Research, project no. 18-29-11051. Our optical studies were performed as part of State Task no. AAAA-A18-118020290104-2 (topic “Spin”) from the Russian Federal Agency for Scientific Organizations for the Mikheev Institute of Metal Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vaganova.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaganova, I.V., Mostovshchikova, E.V., Voronin, V.I. et al. Evolution of the Structural and Optical Properties of PbS Films upon Doping with Iron(II). Russ. J. Phys. Chem. 94, 2428–2434 (2020). https://doi.org/10.1134/S0036024420120304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120304

Keywords:

Navigation