Skip to main content
Log in

Changes in surface area and composition during grinding of silicon in environments of various quality

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Changes in particle size, surface properties, and composition brought about by planetary grinding of silicon in air and various permittivity liquids were investigated. Using a variety of spectroscopic techniques (ESR, IRS, and XPS), a mechanically induced surface oxidation was proved. While at grinding in air and organic liquids a part of the centers originating from dangling orbitals on SiIII are preserved, the properties of water-ground silicon are fully governed by the oxide surface shell. The most effective particle size reduction and surface protection can be reached by grinding in nonpolar liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iwata and Ishiyaka, Mater. Trans. JIM 33, 675 (1992).

    Article  CAS  Google Scholar 

  2. D. Delia Sala and G. Fortunate, J. Electrochem. Soc. 137, 2550 (1990).

    Article  Google Scholar 

  3. M. Niwano, M. Suemitsu, Y. Ishibashi, Z. Takeda, N. Miyamoto, and K. Honma, J. Vac. Sci. Technol. A 10 (3), 1 (1992).

    Google Scholar 

  4. M. Niwano, H. Katakura, Y. Takeda, Y. Takakuwa, N. Miyamoto, and M. Maki, J. Vac. Sci. Technol. A 10 (2) 339 (1992).

    Article  CAS  Google Scholar 

  5. M. Niwano, H. Katakura, Y. Takeda, Y. Takakuwa, N. Miyamoto, A. Hiraiwa, and K. Yagi, J. Vac. Sci. Technol. A 9 (2), 195 (1991).

    Article  CAS  Google Scholar 

  6. P. G. Pai, S. S. Chao, and Y. Takagi, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  CAS  Google Scholar 

  7. A. G. Revesz and B. Golstein, Surf. Sci. 14, 361 (1969).

    Article  CAS  Google Scholar 

  8. G. K. Waters and T. L. Estle, J. Appl. Phys. 32, 1854 (1961).

    Article  Google Scholar 

  9. Y. Nishi, Jpn. J. Appl. Phys. 10, 52 (1971).

    Article  CAS  Google Scholar 

  10. D. Haneman, Phys. Rev. 170, 705 (1968).

    Article  CAS  Google Scholar 

  11. M. F. Chung and D. Haneman, J. Appl. Phys. 37, 1879 (1966).

    Article  CAS  Google Scholar 

  12. P. J. Caplan, J. N. Herbert, B. E. Wagner, and E. H. Pointdexter, Surf. Sci. 54, 33 (1976).

    Article  CAS  Google Scholar 

  13. I. V. Kolbanev and P. Yu. Butyagin, Kinet. Katal. 23, 327 (1982).

    CAS  Google Scholar 

  14. R. G. Stephen and F. L. Riley, J. European Ceram. Soc. 5, 219 (1989).

    Article  CAS  Google Scholar 

  15. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).

    Article  Google Scholar 

  16. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).

    Article  CAS  Google Scholar 

  17. S. Brunauer, P. H. Emmet, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  18. V. F. Kiselev and O. V. Krilov, Adsorption Processes on Semiconductor and Dielectric Surfaces (Izd. Nauka, Moscow, USSR, 1978), in Russian.

    Google Scholar 

  19. M. M. Dubinin, in Adsorption and Porosity: Methods of Adsorption Isotherm Determination and Specific Surface Area of Adsorbents, edited by M. M. Dubinin and V. V. Serpinskii (Proc. 4th Soviet Conf. on Theoretical Problems of Adsorption, Izd. Nauka, Moscow, USSR, 1976), p. 105 in Russian.

    Google Scholar 

  20. I. E. Neymark, in Adsorption and Porosity: On the Role of Chemical Nature of the Adsorbent Surface in Determination of their Porous Structure, edited by M. M. Dubinin and V. V. Serpinskii (Proc. 4th Soviet Conf. on Theoretical Problems of Adsorption, Izd. Nauka, Moscow, USSR, 1976), p. 27, in Russian.

    Google Scholar 

  21. I. E. Neymark, Vest. Akad. Nauk BSSR 1, 102 (1966).

    Google Scholar 

  22. G. Heinicke, Tribochemistry (Akademie-Verlag, Berlin, GDR, 1984).

    Google Scholar 

  23. K. Tkácová, Mechanical Activation of Minerals (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1989).

    Google Scholar 

  24. V. F. Kiselev, K. G. Krasilnikov, and G. S. Khodakov, Dokl. Akad. Nauk, SSSR 130, 1273 (1960).

    CAS  Google Scholar 

  25. R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds (Academic Press, New York and London, 1971).

    Book  Google Scholar 

  26. F. J. Himpsel, F. E. McFeely, A. Taleb-Ibrahimi, J. A. Yamoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).

    Article  CAS  Google Scholar 

  27. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 11, 577 (1988).

    Article  CAS  Google Scholar 

  28. T. J. Sharapatka, Thin Solid Films 226, 219 (1993).

    Article  Google Scholar 

  29. G. Hollinger, Y. Jugnet, P. Petrosa, and T. M. Due, Chem. Phys. Lett. 36, 441 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkáčová, K., Števulová, N., Bastl, Z. et al. Changes in surface area and composition during grinding of silicon in environments of various quality. Journal of Materials Research 10, 2728–2735 (1995). https://doi.org/10.1557/JMR.1995.2728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2728

Navigation