Skip to main content
Log in

Autostoichiometric vapor deposition: Part I. Theory

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The possibility of an autostoichiometric vapor deposition is explored. Heterometal-organic complexes such as double alkoxides are potential candidate precursors for such deposition. Two reaction schemes, the hydrolysis-assisted pyrolysis and the hydrolysis-polycondensation of double alkoxides, are identified to be autostoichiometric reactions. A simple low-pressure apparatus is suggested for autostoichiometric vapor deposition. Mass-flow analysis allows for the identification of a nonstoichiometry factor K which can be used as a quantitative measure of the precursor’s autostoichiometric capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Xu and J. D. Mackenzie, Int. Ferroelectrics 1, 17 (1992).

    Article  CAS  Google Scholar 

  2. K. W. Chour, G. D. Wang, and R. Xu, in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by S. B. Desu, D. B. Beach, B. W. Wessels, and S. Gokoglu (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), p. 65.

  3. A. S. Grove, Ind. & Eng. Chem. 58, 48 (1966).

    Article  CAS  Google Scholar 

  4. R. E. Treybal, Mass-Transfer Operations (McGraw-Hill Book Co., New York, 1955), Chap. 3.

    Google Scholar 

  5. H. Schlichting, Boundary Layer Theory (McGraw-Hill Book Co., New York, 1960), Chap. 7.

    Google Scholar 

  6. D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, Metal Alkoxides (Academic Press, London, 1978), Chap. 5.

    Google Scholar 

  7. M. H. Chisholm, Inorganic Chemistry: Toward the 21st Century (American Chemical Society, Washington, DC, 1983), Chap. 16.

    Book  Google Scholar 

  8. W. Beidell, V. Shklover, and H. Berke, Inorg. Chem. 31, 5561 (1992).

    Article  Google Scholar 

  9. A. P. Purdy and C. F. George, Inorg. Chem. 30, 1970 (1991).

    Article  Google Scholar 

  10. J. F. Campion, D. A. Payne, H. K. Chae, J. K. Maurin, and S. R. Wilson, Inorg. Chem. 30, 3245 (1991).

    Article  Google Scholar 

  11. H. Huppertz and W. L. Engl, IEEE Trans. Electron. Dev. ED-26, 658 (1979).

    Article  Google Scholar 

  12. R. M. Levin and K. Evans-Lutterodt, J. Vac. Sci. Technol. B 1, 54 (1983).

    Article  CAS  Google Scholar 

  13. F. S. Becker, D. Pawlik, H. Anzinger, and A. Spitzer, J. Vac. Sci. Technol. B 5, 1555 (1987).

    Article  CAS  Google Scholar 

  14. S. B. Desu, J. Am. Ceram. Soc. 72, 1615 (1989).

    Article  CAS  Google Scholar 

  15. D. C. Bradley, Chem. Rev. 89, 1317 (1989).

    Article  CAS  Google Scholar 

  16. K. W. Chour, G. D. Wang, and R. Xu, J. Mater. Res., submitted.

  17. R. C. Mehrotra, M. M. Agrawal, and P. N. Kapoor, J. Chem. Soc. A, 2673 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R. Autostoichiometric vapor deposition: Part I. Theory. Journal of Materials Research 10, 2536–2541 (1995). https://doi.org/10.1557/JMR.1995.2536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2536

Navigation