Skip to main content
Log in

Interface between gold and superconducting YBa2Cu3O7−x

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gold (Au) and silver (Ag) are known to be important contact metals on YBa2Cu3O7−x (YBCO). Both metals have been used as additives in fabricating tapes of YBCO and Bi2Sr2CaCu2O8 (BSCCO) materials, and have favorable results in improving not only the flexibility but also the weighted critical currents of the resulting composites. Previous results on superconductor/normal metal/superconductor junctions made using YBCO/Au/YBCO and YBCO/Au/Nb demonstrated that a supercurrent can be induced in the normal metal layers through the proximity effect. Our transmission electron microscopy study of the Au/YBCO interfaces shows a well-bonded interface with no extraneous phases present. Lattice fringes of the (001) plane in YBCO terminated at the interface abruptly. This observation supports previous results of contact resistance of x-ray photoelectron spectroscopy (XPS). Both (001) integral steps and multiples of 1/3 (001) steps were observed at the Au/YBCO interface. When the top gold layer was absent locally, surface degradation was observed as the (001) lattice fringes stopped short from the surface by 10 nm. Our results support that Au is a desirable contact metal and a dependable surface passivation material for YBCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Y. Ma, M. T. Schmidt, L. S. Weinman, E. S. Yang, S. M. Sampere, and S-W. Chan, J. Vacuum Sci. Technol. A 9, 390 (1991).

    Article  CAS  Google Scholar 

  2. K. Heine, J. Tenbrink, and M. Thoener, Appl. Phys. Lett. 55, 2441–2443 (1989).

    Article  CAS  Google Scholar 

  3. K. Osamura, T. Takayama, and S. Ochial, Supercond. Sci. Technol. 2, 107 (1989).

    Article  Google Scholar 

  4. M. Murakami, in Studies of High Temperature Superconductors, edited by A. V. Narikar (Nova Science Publishers, Tokyo, 1991).

    Google Scholar 

  5. L. J. Masur, E. R. Podtburg, C. A. Craven, A. Otto, Z. L. Wang, D. M. Kroeger, J. Y. Coulter, and M. P. Maley, Physica C 230, 274 (1994).

    Article  CAS  Google Scholar 

  6. Y. Tzeng, A. Holt, and R. Ely, Appl. Phys. Lett. 52, 155 (1988); J. W. Ekin, A. J. Panson, and B. A. Blankenship, Appl Phys. Lett. 52, 331 (1988); J. W. Ekin, T. M. Larson, N. F. Bergen, A. J. Nelson, A. B. Swartzlander, L. L. Kazmerski, A. J. Panson, and B. A. Blankenship, Appl. Phys. Lett. 52, 1819 (1988).

    Article  CAS  Google Scholar 

  7. D. L. Kaiser, F. Holtzberg, M. F. Chisholm, and T. K. Worthington, J. Cryst. Growth 85, 593 (1987).

    Article  CAS  Google Scholar 

  8. P. M. Mankiewich, D. B. Schwartz, R. E. Howard, L. D. Jackel, B. L. Straughn, E. G. Burkhardt, and A. H. Dayem, 5th Int. Workshop on Future Electron Devices—High Temperature Superconducting Electron Devices-(FED HiTcSc-ED WORKSHOP), June 2–4, 1988, MIyagi-ZAo, pp. 157–160; P. M. Mankiewich et al., IEEE Magn. 25 (1990); L. H. Greene, J. B. Barner, W. L. Feldmann, L. A. Farrow, P. F. Miceli, R. Ramesh, B. J. Wilkens, B. G. Bagley, J. M. Tarascon, J. H. Wernick, M. Giroud, and J. M. Rowell, Physica C 162–164, 1573 (1989); R. H. Ono, J. A. Beall, M. W. Cromar, T. E. Harvey, M. E. Johansson, C. D. Reintsema, and D. A. Rudman, Appl. Phys. Lett. 59, 1126 (1991).

  9. Q. Li, D. B. Fenner, W. D. Hamblen, and D. G. Hamblen, Appl. Phys. Lett. 62, 2428 (1993); D. B. Fenner, Q. Li, W. D. Hamblen, M. E. Johansson, D. G. Hamblen, L. Lynds, and J. I. Budnick, IEEE Trans. Appl. Supercon. 3, 2104 (1993).

    Article  CAS  Google Scholar 

  10. S-W. Chan, D. M. Hwang, and L. Nazar, J. Appl. Phys. 65, 4719 (1989).

    Article  CAS  Google Scholar 

  11. Y. Feng, D. C. Larbalestier, S. E. Babcock, and J. B. Vander Sande, Appl. Phys. Lett. 61, 1234 (1992).

    Article  Google Scholar 

  12. S-W. Chan, J. Phys. Chem. Solids 55, 1415 (1994).

    Article  CAS  Google Scholar 

  13. A. F. Marshall and R. Ramesh, in Interfaces in High-Tc Superconducting Systems, edited by S. L. Shinde and D. A. Rudman (Springer-Verlag, New York, 1994), p. 71.

    Chapter  Google Scholar 

  14. V. Pendrick, R. Brown, J. R. Matey, A. Findikoglu, X. X. Xi, T. Venkatesan, and A. Inam, J. Appl. Phys. 69, 7927 (1991).

    Article  CAS  Google Scholar 

  15. J. W. Ekin, S. E. Russek, C. C. Clickner, and B. Jeanneret, Appl. Phys. Lett. 62, 369 (1993).

    Article  CAS  Google Scholar 

  16. Contact resistivity1 of Au/YBCO interfaces from an ex situ process was reported to be 8.6 × 10−3 Ω cm2 at 300 K and 4.9 × 10−5 Ω cm2 at 77 K, while a lower value13 of 2.6 × 10−7 Ω cm2 at 79 K with oxygen anneal from an ex situ process and even a lower contact resistivity14 in the range of 10−8−10−9 Ω cm2 at 4 K from an in situ process without oxygen anneal had been reported.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, SW., Zhao, L., Chen, C. et al. Interface between gold and superconducting YBa2Cu3O7−x. Journal of Materials Research 10, 2428–2432 (1995). https://doi.org/10.1557/JMR.1995.2428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2428

Navigation