Skip to main content
Log in

The effects of melting reactions on laboratory-scale waste vitrification

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

At the U.S. Department of Energy’s Hanford Site, processes are being developed to vitrify waste generated during nuclear materials processing. One of the wastes slated for vitrification is known as neutralized current acid waste (NCAW). The batch chemistry of simulated NCAW was varied with oxidants and reductants. Untreated, formated, nitrated, or sugar-added samples were combined with frit to produce melter feed. Offgas measurements of the formated melter feed showed that formates decomposed at temperatures too low for participation in melt redox reactions. Sugar pyrolyzed and produced CO and H2 at temperatures exceeding 665 °C. For the sugar-added samples, the glass quenched from 1200 °C produced an Fe2+ /ΣFe of 0.79. The measured iron redox ratios from the glasses made from untreated, formated, and nitrated wastes were essentially indistinguishable (0.0024 at 1000 °C and 0.032 at 1200 °C). However, the batch chemistry affected volume expansion and the reaction paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hrma, Glastech. Ber. 36K, 360–369 (1990).

    Google Scholar 

  2. D.F. Bickford and R.B. Diemer, J. Non-Cryst. Solids 84, 276–284 (1986).

    Article  CAS  Google Scholar 

  3. D.F. Bickford, R.B. Diemer, and D.C. Iverson, J. Non-Cryst. Solids 84, 285–291 (1986).

    Article  CAS  Google Scholar 

  4. H. D. Schreiber and A. L. Hockman, J. Am. Ceram. Soc. 70 (8), 591–594 (1987).

    Article  CAS  Google Scholar 

  5. D.S. Goldman, D.W. Brite, and W.C. Richey, J. Am. Ceram. Soc. 69 (5), 413–417 (1986).

    Article  CAS  Google Scholar 

  6. D.S. Goldman and D.W. Brite, J. Am. Ceram. Soc. 69 (5), 411–413 (1986).

    Article  CAS  Google Scholar 

  7. W. G. Ramsey, C. M. Jantzen, and D. F. Bickford, in Ceramic Transactions, Vol. 23, Nuclear Waste Management IV, edited by G. G. Wicks, D.F. Bickford, and L.R. Bunnell (American Ceramic Society, Westerville, OH, 1991), pp. 259–265.

    Google Scholar 

  8. W. G. Ramsey, T. D. Taylor, Κ. D. Wiemers, C. M. Jantzen, N. D. Hutson, and D.F. Bickford, in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by A. K. Varshneya, D. F. Bickford, and P. P. Bihuniak (American Ceramic Society, Westerville, OH, 1993), pp. 535–544.

    Google Scholar 

  9. V. Jain, in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by A. K. Varshneya, D. F. Bickford, and P. P. Bihuniak (American Ceramic Society, Westerville, OH, 1993), pp. 523–533.

    Google Scholar 

  10. Ch. Krause and B. Luckscheiter, J. Mater. Res. 6, 2535–2546 (1991).

    Article  CAS  Google Scholar 

  11. A. H. Gerrard and I.H. Smith, Glastech. Ber. 56K, 13–18 (1983).

    Google Scholar 

  12. J.D. Vienna, P. A. Smith, and P.R. Hrma, Ceram. Trans. 45, 311–325 (1994).

    CAS  Google Scholar 

  13. J. S. Ahn and P. Hrma, in Advances in Ceramics (American Ceramic Society, Westerville, OH, 1986), Vol. 20.

    Google Scholar 

  14. H. Li and M. Tomozawa, unpublished.

  15. D.S. Goldman, J. Am. Ceram. Soc. 66 (3), 205–209 (1983).

    Article  CAS  Google Scholar 

  16. D.S. Goldman, J. Non-Cryst. Solids 84, 292–298 (1986).

    Article  CAS  Google Scholar 

  17. H. J. Blair and J.M. Lukacs PNL-3552 (Pacific Northwest Laboratory, Richland, WA, 1980).

    Google Scholar 

  18. C. Lucktong and P. Hrma, J. Am. Ceram. Soc. 71, 323–328 (1988).

    Article  CAS  Google Scholar 

  19. L. Nemec, Glass Technol. 15 (6), 153–156 (1974).

    CAS  Google Scholar 

  20. H. D. Schreiber, C. W. Schreiber, M. W. Riethmiller, and J. Sloan Dowrey, in Scientific Basis for Nuclear Waste Management XIII, edited by V.M. Oversby and P.W. Brown (Mater. Res. Soc. Symp. Proc. 176, Pittsburgh, PA, 1990), pp. 419–426.

  21. P. Hrma, in Chemistry of Glasses, 2nd ed. (A. Paul Chapman and Hall, New York, 1990).

    Google Scholar 

  22. P. Hrma, in Advances in the Fusion of Glass, edited by D. F. Bickford, E.N. Boulos, F. Olix, W.E. Horsfall, J.N. Lingscheit, W. C. La Course, F. E. Woolley, F. Harding, and L. D. Pye (American Ceramic Society, Westerville, OH, 1988), pp. 10.1–10.18.

    Google Scholar 

  23. D.-S. Kim and P. Hrma, Ceram. Bull. 69 (6), 1039-1043 (1990).

    CAS  Google Scholar 

  24. D.R. Jones, W.C. Jansheski, and D.S. Goldmand, Anal. Chem. 53, 923–92 (1981).

    Article  CAS  Google Scholar 

  25. K. Heide, H.J. Eichhorn, and W. Holand, Silikattechn. 28, 177–179 (1979).

    Google Scholar 

  26. E. Bader, Silikattechn. 29, 84–87 (1979).

    Google Scholar 

  27. G. G. Gausman, L. M. Donohoe, J. J. Kohli, J. M. Jewell, and J. E. Shelby, in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by A. K. Varshneya, P. F. Bickford, and P. P. Bihursak (American Ceramic Society, Westerville, OH, 1993), pp. 391–396.

  28. C.A. Parker, G. G. Gausman, and J.E. Shelby, in Ceramic Transactions, Vol. 29, Advances in Fusion and Processing of Glass, edited by A. K. Varshneya, P. F. Bickford, and P. P. Bihursak (American Ceramic Society, Westerville, OH, 1993), pp. 379–390.

  29. CRC Handbook of Chemistry and Physics (CRC Press, Ann Arbor, MI, 1992).

  30. R. F. Speyer, Thermal Analysis of Materials (Marcel Dekker, New York, 1994).

    Google Scholar 

  31. J.L. Ryan, PNL-10510 (Pacific Northwest Laboratory, Richland, WA, 1994).

    Google Scholar 

  32. O. Abe, T. Utsunomiya, and Y. Hoshino, Bull. Chem. Soc. Jpn. 56 (2), 428–433 (1983).

    Article  CAS  Google Scholar 

  33. V.F. Kramer, Glastechn. Ber. 53 (7), 177–188 (1980).

    Google Scholar 

  34. H. D. Schreiber, G. B. Balazs, B. E. Carpenter, J. E. Kirkley, L. M. Minnix, and P. L. Jamison, Comm. Am. Ceram. Soc. 67 (6), C106–109 (1984).

    Article  Google Scholar 

  35. H.D. Smith, K.D. Weimers, M.H. Langowski, M.R. Powell, and D. E. Larson, in Scientific Basis for Nuclear Waste Management XVII, edited by A. Barkatt and R. A. Van Kony-nenburg (Mater. Res. Soc. Symp. Proc. 333, Pittsburgh, PA, 1994), pp. 495–503.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P.A., Vienna, J.D. & Hrma, P. The effects of melting reactions on laboratory-scale waste vitrification. Journal of Materials Research 10, 2137–2149 (1995). https://doi.org/10.1557/JMR.1995.2137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2137

Navigation