Skip to main content
Log in

Low Temperature Sequential Melting and Anion Retention in Simplified Low Activity Waste

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This study seeks to understand the low temperature reactions of the salt phase that occur during the vitrification of Hanford Low Activity Waste (LAW). Salts (such as nitrates, sulfates, carbonates, halides, etc.) play a key role in these low temperature reactions as they sequentially melt, decompose, and volatilize during batch-to-glass conversion. To further understand these complex processes, simplified LAW melts containing oxyanion salts (sodium salts of carbonate, sulfate, and/or nitrate) and early melting glass formers (boric acid) have been evaluated using thermal analysis, infrared absorption spectroscopy, and X-ray diffraction. Results from this study indicate that the volatilization behavior of particular salts is influenced by the presence or absence of other salts. NaNO3 volatilization is decreased by the presence of Na2SO4. The addition of either Na2SO4 or NaNO3 to the system may enhance the volatilization of Na2CO3. In all cases, Na2SO4 was retained after melting and was often found to be in two different crystalline phases upon quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Goles, J. Perez, B. MacIsaac, D. Siemer and J. McCray, Test summary report INEEL sodium-bearing waste vitrification demonstration - RSM-01-1, Pacific Northwest National Laboratory, Richland, WA, PNNL-13522 (2001).

    Google Scholar 

  2. H. Li, P. Hrma and J.D. Vienna in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. VI, edited by D. R. Spearing, G. L. Smith and R. L. Putnam, (The American Ceramic Society, Westerville, OH 119, St. Louis, MO, 2000), pp. 237.

    Google Scholar 

  3. P. Hrma, J. Vienna and J. Ricklefs in Mat. Res. Soc. Symp. - Sci. Basis Nucl. Waste Manage. XXVI, edited by R. J. Finch and D. B. Bullen, (Materials Research Society, Warrendale, PA 757, Boston, MA, 2002), pp. 147.

  4. P. Hrma, J. Vienna, W. Buchmiller and J. Ricklefs in Env. Issues Waste Manage. Tech. Ceram. Nucl. Ind. IX - Ceram. Trans., edited by J. D. Vienna and D. R. Spearing, (The American Ceramic Society, Westerville, OH 155, Nashville, TN, 2003), pp. 93.

    Google Scholar 

  5. I.L. Pegg, H. Gan, I. Muller, D. McKeown and K.S. Matlack, Summary of preliminary results on enhanced sulfate incorporation during vitrification of LAW feeds, Vitreous State Laboratory, the Catholic University of America, Washington, D.C., VSL-00R3630-1 (2000).

    Google Scholar 

  6. C.M. Jantzen, M.E. Smith and D.K. Peeler in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X, edited by J. D. Vienna, C. C. Herman and S. Marra, (The American Ceramic Society 168, Indianapolis, IN, 2004), pp. 141.

  7. K. Xu, P. Hrma, J. Rice, B.J. Riley, M.J. Schweiger and J.V. Crum, J. Non-Cryst. Solids 98, 3105 (2015).

    CAS  Google Scholar 

  8. T. Jin, D. Kim, A.E. Tucker, M.J. Schweiger and A.A. Kruger, J. Non-Cryst. Solids 425, 28 (2015).

    Article  CAS  Google Scholar 

  9. J.D. Vienna, D.S. Kim, I.S. Muller, G.F. Piepel, A.A. Kruger and C. Jantzen, J. Amer. Ceram. Soc. 97, 3135 (2014).

    Article  CAS  Google Scholar 

  10. W.M. Haynes, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 91st ed., (CRC Press, Boca Raton, 2009).

    Google Scholar 

  11. P.A. Bingham, S. Vaishnav, S.D. Forder, A. Scrimshire, B. Jaganathan, J. Rohini, J.C. Marra, K.M. Fox, E.M. Pierce, P. Workman and J.D. Vienna, J. Alloys Compd. 695, 656 (2017).

    Article  CAS  Google Scholar 

  12. R.K. Mishra, K.V. Sudarsan, P. Sengupta, R.K. Vatsa, A.K. Tyagi, C.P. Kaushik, D. Das and K. Raj, J. Amer. Ceram. Soc. 91, 3903 (2008).

    Article  CAS  Google Scholar 

  13. K. Tanaka, H. Naruse, H. Morikawa and F. Marumo, Acta Crystallogr. B 47, 581 (1991).

    Article  Google Scholar 

  14. F.C. Hawthorne and R.B. Ferguson, Can. Mineral. 13, 181 (1975).

    Google Scholar 

  15. G.L. Paul and A.W. Pryor, Acta Crystallogr. B 28, 2700 (1972).

    Article  CAS  Google Scholar 

  16. M. Marezio, H.A. Plettinger and W.H. Zachariasen, Acta Crystallogr. 16, 594 (1963).

    Article  CAS  Google Scholar 

  17. R. Frech, E.C. Wang and J.B. Bates, Spectrochim. Acta A 36, 915 (1980).

    Article  Google Scholar 

  18. A. Thieme, D. Möncke, R. Limbach, S. Fuhrmann, E.I. Kamitsos and L. Wondraczek, J. Non-Cryst. Solids 410, 142 (2015).

    Article  CAS  Google Scholar 

  19. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang and B.T. Zhang, J. Mol. Struct. 1013, 134 (2012).

    Article  CAS  Google Scholar 

  20. I. Nakagawa and J.L. Walter, J. Chem. Phys. 51, 1389 (1969).

    Article  CAS  Google Scholar 

  21. M. Lenoir, A. Grandjean, J.-L. Dussossoy and D. Neuville, Sulphate Incorporation in Borosilicate Glasses and Melts: a Kinetic Approach, 2008).

    Google Scholar 

  22. S. Manabe and K. Kitamura, J. Non-Cryst. Solids 80, 630 (1986).

    Article  CAS  Google Scholar 

  23. J. Klouzek, J. Ullrich, M. Jiricka, D. Rohanova and T. Tonthat, Ceram. Silik. 44, 61 (2000).

    CAS  Google Scholar 

  24. S. Rasmussen, J. Jorgensen and B. Lundtoft, J. Appl. Crystallogr. 29, 42 (1996).

    Article  CAS  Google Scholar 

  25. D.A. McKeown, I.S. Muller, H. Gan, I.L. Pegg and C.A. Kendziora, J. Non-Cryst. Solids 288, 191 (2001).

    Article  CAS  Google Scholar 

  26. M. Ganguli and K.J. Rao, J. Phys. Chem. B 103, 920 (1999).

    Article  CAS  Google Scholar 

  27. P.A. Bingham and R.J. Hand, Mat. Res. Bull. 43, 1679 (2008).

    Article  CAS  Google Scholar 

  28. E.I. Kamitsos and M.A. Karakassides, Phys. Chem. Glasses 30, (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nienhuis, E.T., McCloy, J.S. Low Temperature Sequential Melting and Anion Retention in Simplified Low Activity Waste. MRS Advances 5, 195–206 (2020). https://doi.org/10.1557/adv.2020.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.52

Navigation