Skip to main content
Log in

Crack progression and interface debonding in brittle/ductile nanoscale multilayers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crack initiation and progression have been studied in nanoscale brittle/ductile multilayers of Cu and Si. Variations in the interface debond energy on the cracking behavior have been examined by using thin interlayers comprising either Cr (strong interface) or Au (weak interface). For strongly bonded Cr interfaces, it has been found that cracks forming in the Si invariably extend through the Cu layers, despite the ductile rupture characteristics of the Cu. This behavior occurs even when the Cu layers comprise more than 70% of the multilayer volume. It also contrasts with the crack arrest capabilities exhibited by relatively thick ductile layers (∼10-100 μm). The disparity in behavior is attributed to the relatively large cracking strain required for the thin brittle layers. Weak Au interfaces result in debonding which, in turn, can suppress the propagation of cracks into adjacent layers. However, when the interface includes strongly bonded sections, the debond arrests, and often kinks into the attached Si. In this case, cracking still progresses sequentially through the Si layers. Careful control of the interface debond energy is needed to fully suppress crack progression in nanoscale multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Microelectronics Packaging Handbook, edited by R. R. Tummala and E.J. Rymaszewski (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  2. D. R. Barbour, in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, edited by J. B. Blum and W. R. Cannon (The American Ceramics Society, Westerville, OH, 1986).

    Google Scholar 

  3. S. W. Freiman and A. C. Gonzalez, in Advances in Ceramics, Vol. 19, Mulitlayer Ceramic Devices, edited by J. B. Blum and W. R. Cannon (The American Ceramics Society, Westerville, OH, 1986).

    Google Scholar 

  4. W.D. Nix, Metall. Trans. A 20A (II), 2217-2245 (1989).

    Article  CAS  Google Scholar 

  5. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63-191 (1992).

    Article  Google Scholar 

  6. T. Ye, Z. Suo, and A. G. Evans, Int. J. Solids Struct. 29 (21), 2639-2648 (1992).

    Article  Google Scholar 

  7. M. S. Hu and A. G. Evans, Acta Metall. 37 (3), 917-925 (1989).

    Article  CAS  Google Scholar 

  8. M.S. Hu, M.D. Thouless, and A.G. Evans, Acta Metall. 36 (5), 1301–1307 (1988).

    Article  CAS  Google Scholar 

  9. M.C. Shaw, D.B. Marshall, M.S. Dadkhah, and A.G. Evans, Acta Metall. Mater. 41 (11), 3311-3322 (1993).

    Article  CAS  Google Scholar 

  10. M.Y. He, F.E. Heredia, D.J. Wissuchek, M.C. Shaw and A.G. Evans, Acta Metall. Mater. 41 (4), 1223-1228 (1993).

    Article  CAS  Google Scholar 

  11. H.C. Cao and A.G. Evans, Acta Metall. Mater. 39 (12), 2997-3005 (1991).

    Article  CAS  Google Scholar 

  12. K. S. Chan, M. Y. He, and J. W. Hutchinson, Mater. Sci. Eng. A 167 (1-2), 57-64 (1993).

    Article  Google Scholar 

  13. S. Ho and Z. Suo, J. Appl. Mech. 60 (4), 890-894 (1993).

    Article  Google Scholar 

  14. D. K. Leung, M. Y. He, and A. G. Evans, J. Mater. Res. 10, 1693 (1995).

    Article  CAS  Google Scholar 

  15. M. F. Ashby and D. R. H. Jones, Engineering Materials (Perga-mon Press, London, 1980), p. 31.

    Google Scholar 

  16. Metals Handbook, edited by H. E. Boyer and T. L. Gall (American Society for Metals, Metals Park, OH, 1985).

    Google Scholar 

  17. D. C. Boyd and D. A. Thompson, from Encyclopedia of Chemical Technology, 3rd ed. (John Wiley & Sons, New York, 1980), Vol. 11, pp. 807-880.

    Google Scholar 

  18. J.L. Beuth, Jr., Int. J. Solids Struc. 29 (13), 1657-1675 (1992).

    Article  Google Scholar 

  19. M. A. Maden and R. J. Farris, Exp. Mech. 31 (2), 178-184 (1991).

    Article  Google Scholar 

  20. S. K. Ghandhi, VLSI Fabrication Principles (John Wiley & Sons, New York, 1983).

    Google Scholar 

  21. P.S. Ho and F. Faupel, Appl. Phys. Lett. 53 (17), 1602-1604 (1988).

    Article  CAS  Google Scholar 

  22. M.E. Thomas, M.P. Hartnett, and J.E. McKay, J. Vac. Sci. Technol. A 6 (4), 2570-2571 (1988).

    Article  Google Scholar 

  23. M.D. Marz and S.D. Dahlgren, J. Appl. Phys. 46 (8), 3235-3237 (1975).

    Article  Google Scholar 

  24. N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Acta Metall. Mater. 42, 475-487 (1994).

    Article  CAS  Google Scholar 

  25. L. S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans, Acta Metall. 36, 945 (1988).

    Article  CAS  Google Scholar 

  26. A. Bagchi, G.E. Lucas, Z. Suo, and A.G. Evans, J. Mater. Res. 9, 1734-1741 (1994).

    Article  CAS  Google Scholar 

  27. A. Bagchi, Ph.D. Dissertation, UCSB, May 1994; A. Bagchi and A. G. Evans, Thin Solid Films (in press).

  28. M-Y. He, A. Bartlett, A.G. Evans, and J.W. Hutchinson, J. Am. Ceram. Soc. 74, (4), 767-771 (1991).

    Article  CAS  Google Scholar 

  29. M-Y. He and J.W. Hutchinson, Int. J. Solids Struc. 25 (9), 1053-1067 (1989).

    Article  Google Scholar 

  30. W.A. Curtin, J. Am. Ceram. Soc. 74, 2837 (1991).

    Article  CAS  Google Scholar 

  31. Y.H. Chiao and D.R. Clarke, Acta Metall. 37, 203 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, D.K., Zhang, N.T., McMeeking, R.M. et al. Crack progression and interface debonding in brittle/ductile nanoscale multilayers. Journal of Materials Research 10, 1958–1968 (1995). https://doi.org/10.1557/JMR.1995.1958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1958

Navigation