Skip to main content
Log in

A microstructural study of rapidly solidified and heat-treated austenitic Fe–Mn−Al–Mo–W–Nb–C alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructural characteristics of melt-spun and heat-treated austenitic Fe−28Mn−8.6Al−0.5Mo−0.7W−0.5Nb−1.1C (in wt. %) alloys have been investigated by means of transmission electron microscopy. The melt-spun alloy contained fine austenitic cells and some intercelluar Nb(C, N) precipitates. Detailed observations revealed fine {100} modulations in the matrix of the cells, as well as a concomitant L′I2 atomic ordering arising from it. These observations indicate that the onset of decomposition of the initial austenite phase occurred during the rapid solidification process. Aging of the melt-spun alloy at 823–1173 K produced various microstructures, including a general precipitation of Nb(C, N) in the matrix. On isochronal annealing for 1 h, this matrix Nb(C, N) precipitation commenced at 1073 K with the formation of metastable coherent K-carbide (K′) near cell boundaries. On annealing at temperatures above 1123 K, only the Nb(C, N) precipitates were formed, on a fine scale, being accompanied by the formation of precipitate-free regions in the vicinity of cell and grain boundaries. Both intercellular and matrix Nb(C, N) precipitates obeyed a cube-to-cube orientation relationship with austenite. The general matrix precipitation of Nb(C, N) and formation of precipitate-free regions are discussed in terms of a vacancy (defect)-depletion effect. Finally, it was demonstrated that, by employing a double heat-treatment schedule of annealing at 1173 K followed by aging at 823 K, a novel microstructure consisting of fine dispersoids of Nb(C, N) carbo-nitride, distributed over the matrix of {100} modulated structure, could be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. James, J. Iron Steel Inst. 207, 54 (1969).

    CAS  Google Scholar 

  2. G.L. Kayak, Met. Sci. Heat Treat. 11, 95 (1969).

    Article  Google Scholar 

  3. G. S. Krivonogov, M. F. Alekseyenko, and G.G. Solov’yeva, Phys. Met. Metall. 39, 86 (1975).

    Google Scholar 

  4. K. H. Han, W. K. Choo, D. Y. Choi, and S. P. Hong, Alternate Alloying for Environmental Resistance, edited by S. K. Banerji and G.R. Smolik (TMS-AIME, Warrendale, PA, 1987), p. 91.

    Google Scholar 

  5. N. A. Storchak and A. G. Drachinskaya, Phys. Met. Metall. 44, 123 (1977).

    Google Scholar 

  6. K. H. Han, J. C. Yoon, and W. K. Choo, Scripta Metall. 20, 33 (1986).

    Article  CAS  Google Scholar 

  7. K.H. Han and W. K. Choo, Metall. Trans. 20A, 205 (1989).

    Article  CAS  Google Scholar 

  8. K. H. Han, W. K. Choo, and D. E. Laughlin, Scripta Metall. 22, 1873 (1988).

    Article  CAS  Google Scholar 

  9. M.F. Alekseenko, G. S. Krivonogov, L. G. Kozyreva, I. M. Kachanova, and L. V. Arapova, Met. Sci. Heat Treat. 14, 187 (1972).

    Article  Google Scholar 

  10. I.S. Kalashinikov, V.S. Litvinov, M.S. Khadyyev, and L.D. Chumakova, Phys. Met. Metall. 57, 160 (1984).

    Google Scholar 

  11. S. D. Karakishev, L. D. Chumakova, I. S. Kalashinikov, and A. A. Senchenko, Met. Sci. Heat Treat. 28 (7–8), 609 (1987).

    Google Scholar 

  12. J.V. Wood and R.W.K. Honeycombe, Mater. Sci. Eng. 23, 107 (1976).

    Article  CAS  Google Scholar 

  13. J.V. Wood and R.W.K. Honeycombe, Philos. Mag. A37, 501 (1978).

    Article  Google Scholar 

  14. K. H. Han and H. E. Lee, Scripta Metall. et Mater. 30, 441 (1994).

    Article  CAS  Google Scholar 

  15. J.V. Wood and R.W.K. Honeycombe, J. Mater. Sci. 9, 1183 (1974).

    Article  CAS  Google Scholar 

  16. J.W. Cahn, Acta Metall. 10, 179 (1962).

    Article  CAS  Google Scholar 

  17. V. Daniel and H. Lipson, Proc. R. Soc. London A181, 368 (1943).

    Google Scholar 

  18. K.H. Han and W.K. Choo, Metall. Trans. 14A, 973 (1983).

    Article  Google Scholar 

  19. S.D. Karakishev and I.S. Kalashinikov, Phys. Met. Metall. 62, 187 (1986).

    Google Scholar 

  20. J.M. Silcock, J. Iron Steel Inst. 201, 125 (1963).

    Google Scholar 

  21. M. A. P. Dewey, G. Sumner, and I. S. Brammer, J. Iron Steel Inst. 203, 938 (1965).

    CAS  Google Scholar 

  22. A.T. Davenport, L.C. Brossard, and R.E. Miner, J. Met. 27, 21 (1975).

    Google Scholar 

  23. A. G. Kachaturyan, Theory of Structural Transformations in Solids (John Wiley & Sons, Inc., New York, 1983), p. 315.

    Google Scholar 

  24. J. S. T. van Aswegen and R. W. K. Honeycombe, Acta Metall. 10, 262 (1962).

    Article  Google Scholar 

  25. J. S. T. van Aswegen, R. W. K. Honeycombe, and D. H. Warrington, Acta Metall. 12, 1 (1964).

    Article  Google Scholar 

  26. J.M. Silcock and W.J. Tunstall, Philos. Mag. 10, 361 (1964).

    Article  CAS  Google Scholar 

  27. J. P. Shepherd, Metall. Sci. J. 3, 229 (1969).

    Article  CAS  Google Scholar 

  28. G. Thomas and R.H. Willens, Acta Metall. 12, 191 (1968).

    Article  Google Scholar 

  29. H. Nordberg and B. Aaronson, J. Iron Steel Inst. 206, 263 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, K.H., Lee, H.E. A microstructural study of rapidly solidified and heat-treated austenitic Fe–Mn−Al–Mo–W–Nb–C alloys. Journal of Materials Research 10, 1371–1378 (1995). https://doi.org/10.1557/JMR.1995.1371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1371

Navigation