Skip to main content
Log in

Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys

  • Alloy Phases
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The phase decomposition of two (Fe0.65Mn0.35)0.83Al0.17-xC (x=3 and 4 at. pct orx=0.74 and 0.98 wt pct) austenitic alloys prepared by rapid solidification (RS) has been investigated on aging at 823 and 923 K by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Under low bulk carbon supersaturation conditions (823 K aging of low carbon alloy and 923 K aging of high carbon alloy), zones formed preferentially at the cellular boundaries and in the bands in the {100} planes, giving rise to line broadening in the X-ray diffraction patterns. On the other hand, the initial aging under high, carbon supersaturation condition (823 K aging of high carbon alloy) resulted in the sideband formation, resulting from homogeneous structural modulation in the <100>γ directions throughout the grain. The bulk carbon supersaturation dependence of initial decomposition modes indicates that carbon atom fluctuations are crucial in the initial state of phase decomposition, and that the observed {100} modulated structure corresponds to a structure consisting of alternate carbon-rich and carbon-poor zones. Together with the interstitial clustering process, an fcc-based substitutional ordering reaction concurrently took place. Later on these zones were replaced by a coherent metastable phase in the matrix, which was finally transformed into the cubic carbide (κ carbide) of (Fe, Mn)3AlCx chemical formula with the L'12 structure. However, at the end, a combined heterogeneous β-Mn and κ carbide precipitation seemed to finalize the decomposition process over the matrix κ carbide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Ham and R. E. Cairns:Product Eng., 1958, vol. 29, no. 12, pp. 50–52.

    Google Scholar 

  2. D. J. Schmatz:Trans. ASM, 1960, vol. 52, pp. 898–913.

    CAS  Google Scholar 

  3. S. K. Banerji:Metal Progr., 1978, vol. 113, no. 4, pp. 59–62.

    CAS  Google Scholar 

  4. R. Wang and F. H. Beck:Metal Progr., 1983, vol. 123, no. 4, pp. 72–76.

    CAS  Google Scholar 

  5. P. J. James:J Iron Steel Inst., 1969, vol. 207, pp. 54–57.

    CAS  Google Scholar 

  6. G. L. Kayak:Met. Sci. Heat Treat., 1969, no. 2, pp. 95–97.

    Article  Google Scholar 

  7. M. F. Alekseyenko, G. S. Krivonogov, L. G. Kozyreva, I. M. Kachanova, and L. V. Arapova:Met. Sci. Heat Treat., 1972, no. 3, pp. 187–89.

    Article  Google Scholar 

  8. G. S. Krivonogov, M. F. Alekseyenko, and G. S. Solov'yeva:Phys. Met. Metallogr., 1975, vol. 39, no. 4, pp. 86–92.

    Google Scholar 

  9. N. A. Storchak and A. G. Drachinskaya:Phys. Met. Metallogr., 1977, vol. 44, no. 2, pp. 123–30.

    Google Scholar 

  10. A. Inoue, Y. Kojima, T. Minemura, and T. Masumoto:Metall. Trans. A, 1981, vol. 12A, pp. 1245–53.

    Google Scholar 

  11. K. H. Han and W. K. Choo:Metall. Trans. A, 1983, vol. 14A, pp. 973–75.

    Google Scholar 

  12. W. K. Choo and K. H. Han:Metall. Trans. A, 1985, vol. 16A, pp. 5–10.

    CAS  Google Scholar 

  13. J. V. Wood and R. W. K. Honeycombe:J. Mater. Sci., 1974, vol. 9, pp. 1183–88.

    Article  CAS  Google Scholar 

  14. E. S. U. Laine, E. J. Hiltunen, and M. H. Heinonen:Acta Metall., 1980, vol. 28, pp. 1565–69.

    Article  CAS  Google Scholar 

  15. T. Tsujimoto, K. Hashimoto, and K. Saito:Acta Metall., 1977, vol. 25, pp. 295–303.

    Article  CAS  Google Scholar 

  16. E. P. Butler and G. Thomas:Acta Metall., 1970, vol. 18, pp. 347–65.

    Article  CAS  Google Scholar 

  17. D. E. Laughlin and J. W. Cahn:Acta Metall., 1975, vol. 23, pp. 329–39.

    Article  CAS  Google Scholar 

  18. V. Daniel and H. Lipson:Proc. Roy. Soc. (London), 1943, vol. 181A, ser. A, pp. 368–78.

    Google Scholar 

  19. E. Biedermann:Acta Cryst., 1960, vol. 13, pp. 650–52.

    Article  CAS  Google Scholar 

  20. B. Ditchek and L. H. Schwartz:Ann. Rev. Mater. Sci., 1979, vol. 9, pp. 219–53.

    Article  CAS  Google Scholar 

  21. C. Heyzelden and J. J. Rayment, and B. B. Cantor:Acta Metall., 1983, vol. 31, pp. 379–86.

    Article  Google Scholar 

  22. J. V. Wood and R. W. K. Honeycombe:Mater. Sci. Eng., 1976, vol. 23, pp. 107–12.

    Article  CAS  Google Scholar 

  23. I. R. Sare and R. W. K. Honeycombe:Met. Sci., 1979, vol. 13, pp. 269–79.

    CAS  Google Scholar 

  24. A. Guinier:Acta Metall., 1955, vol. 3, pp. 510–12.

    Article  Google Scholar 

  25. J. W. Cahn:Acta Metall., 1962, vol. 10, pp. 179–83.

    Article  CAS  Google Scholar 

  26. A. G. Khachaturyan:Phys. Status Solidi, 1969, vol. 35, pp. 119–32.

    Article  CAS  Google Scholar 

  27. R. J. Livak and G. Thomas:Acta Metall., 1971, vol. 19, pp. 497–505.

    Article  CAS  Google Scholar 

  28. A. Datta and W. A. Soffa:Acta. Metall., 1976, vol. 24, pp. 987–1001.

    Article  CAS  Google Scholar 

  29. D. E. Laughlin:Acta Metall., 1976, vol. 24, pp. 53–58.

    Article  CAS  Google Scholar 

  30. T. Miyazaki, S. Takagishi, H. Mori, and T. Kozaki:Acta Met., 1980, vol. 28, pp. 1143–53.

    Article  CAS  Google Scholar 

  31. D. de Fontaine:Acta Metall., 1969, vol. 17, pp. 477–82.

    Article  Google Scholar 

  32. K. H. Han and W. K. Choo:Scripta Metall., vol. 17, pp. 281–84.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, K.H., Choo, W.K. Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys. Metall Trans A 20, 205–214 (1989). https://doi.org/10.1007/BF02670246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670246

Keywords

Navigation