Skip to main content
Log in

Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin films in the Pb-La-Ti-O (PLT) system were prepared under two different oxygen partial pressure (Po2) conditions by multi-ion-beam reactive sputtering (MIBERS). The oxidation of the depositing species was determined from the deposition rate dependence on Po2 and the Po2 dependence of the positive secondary ion emission from the sputtering targets. Films deposited at high Po2 (Po2 greater than the critical partial pressure for oxidation of the Pb target surface) were fully oxidized, and they formed the pyrochlore phase during annealing. The low Po2 conditions (Po2 less than or equal to the critical partial pressure for oxidation of the Pb target surface) caused sputtering of incompletely oxidized Pb species, and the resulting oxygen deficient films produced phase-pure perovskite. The formation of the pyrochlore phase at high Po2 and the perovskite phase at low Po2 is independent of Pb content within the film; the phase formation is dependent on the oxidation state of the Pb, which is sensitive to both the Po2 and the sputtering rate of the Pb. A perovskite/pyrochlore phase formation model (PPFM) that incorporates annealing time, temperature, and heating rate, and thin film oxygen deficiency was developed to explain the formation of the perovskite and pyrochlore phase during postdeposition annealing of PLT thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Ameen, T.M. Graettinger, S.H. Rou, H.N. Al-Shareef, K. D. Gifford, O. Auciello, and A. I. Kingon, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 65.

  2. R. A. Roy, K. F. Etzold, and J. J. Cuomo, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 77.

  3. M. Okuyama and Y. Hamakawa, Ferroelectrics 63, 243 (1985).

    Article  CAS  Google Scholar 

  4. K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60 (1), 361 (1986).

    Article  CAS  Google Scholar 

  5. S. B. Krupanidhi, H. Hu, and V. Kumar, J. Appl. Phys. 71 (1), 376 (1992).

    Article  CAS  Google Scholar 

  6. C. Kwok, S. B. Desu, and L. Kammerdiner, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 83.

  7. S.L. Swartz and T.R. Shrout, Mater. Res. Bull. XVII, 1245 (1984).

    Google Scholar 

  8. M. Lejeune and J. P. Boilot, Ceram. Int. 8, 99 (1982).

    Article  CAS  Google Scholar 

  9. R. N. Castellano, Thin Solid Films 46, 213 (1977).

    Article  CAS  Google Scholar 

  10. R.N. Castellano, IEEE Trans. Comp. Hyb. and Man. Tech. CHMT-1 (4), 397 (1978).

  11. J. Roth, in Sputtering by Particle Bombardment II, edited by R. Behrisch (Springer-Verlag, New York, 1983), p. 91.

  12. G. R. Fox, Doctoral Thesis, The Pennsylvania State University (1992).

  13. 3-cm Ion Source, Commonwealth Scientific Corp., Alexandria, VA.

  14. Lead 99.999% pure, CERAC, Milwaukee, WI.

  15. Lanthanum 99.9% pure, Advent Associates, Ltd., Trafford, PA.

  16. Titanium 99.9% pure, CERAC, Milwaukee, WI.

  17. STM-100 Thickness/Rate Monitor, Sycon Instruments, East Syracuse, NY.

  18. G. R. Fox and S. B. Krupanidhi, unpublished research.

  19. Alpha-Step 200, Tencor Instruments, Mountain View, CA.

  20. Nova Electronic Materials, Dallas, TX.

  21. 2-propanol, A.C.S. reagent grade, J.T. Baker, Phillipsburg, NJ.

  22. Heat-Pulse 210, AG Associates, Sunnyvale, CA.

  23. Spectraspan model IIIb, Spectrometrics, Inc., Andover, MA.

  24. Cameca Camebax SX-50, Cameca Instr., Courbeoie, France.

  25. HCl 37% A.C.S. reagent grade, J. T. Baker, Phillipsburg, NJ.

  26. Hydrogen peroxide 30 wt. % solution, Aldrich Chemical Company, Inc., Milwaukee, WI.

  27. G.R. Fox, S.B. Krupanidhi, K.L. More, and L.F. Allard, J. Mater. Res. 7, 3039 (1992).

    Article  CAS  Google Scholar 

  28. C. Plog, L. Wiedmann, and A. Benninghoven, Surf. Sci. 67, 565 (1977).

    Article  CAS  Google Scholar 

  29. K. Wittmaack, Surf. Sci. 89, 668 (1979).

    Article  CAS  Google Scholar 

  30. G. R. Fox and S. B. Krupanidhi, unpublished research.

  31. I. M. Podgornyi, Topics in Plasma Diagnostics (Plenum Press, New York, 1971), p. 22.

  32. S. M. Rossnagel, J. Vac. Sci. Technol. A 7, 1025 (1989).

    Article  CAS  Google Scholar 

  33. PAD V, diffractometer, Scintag, Santa Clara, CA.

  34. 4000EX Ultrahigh Resolution Transmission Electron Microscope, JEOL Ltd., Japan.

  35. Dimple Grinder, Model 656, Gatan Inc., Warrendale, PA.

  36. Dual Ion Mill, Model 600, Gatan Inc., Pleasanton, CA.

  37. R. W. Hewitt and N. Winograd, Surf. Sci. 78, 1 (1978).

    Article  CAS  Google Scholar 

  38. D. Hennings and K. H. Härdtl, Phys. Status Solidi A 3, 465 (1970).

    Article  CAS  Google Scholar 

  39. G. R. Fox, S. B. Krupanidhi, and K. L. More, J. Mater. Res. 8, 2191 (1993).

    Article  CAS  Google Scholar 

  40. G. R. Fox and S. B. Krupanidhi, J. Mater. Res. 8, 2203 (1993).

    Article  CAS  Google Scholar 

  41. G.R. Fox and S.B. Krupanidhi, J. Appl. Phys. 74 (3), 1949 (1993).

    Article  CAS  Google Scholar 

  42. H. E. Brown, Lead Oxide-Properties and Applications (International Lead Zinc Research Organization, Inc., New York, 1985), pp. 1–7.

  43. I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft mbH, Germany, 1989).

  44. F. W. Martin, Phys. Chem. Gasses 6 (4), 143 (1965).

    CAS  Google Scholar 

  45. H. Hu, C. J. Peng, and S. B. Krupanidhi, unpublished research.

  46. C.D.E. Lakeman and D.A. Payne, J. Am. Ceram. Soc. 75 (11), 3091 (1992).

    Article  CAS  Google Scholar 

  47. R. W. Schwartz, R. A. Assink, and T. J. Headley, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 245.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, G.R., Krupanidhi, S.B. Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films. Journal of Materials Research 9, 699–711 (1994). https://doi.org/10.1557/JMR.1994.0699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0699

Navigation