Skip to main content
Log in

Solid-state reaction of Pt thin film with single-crystal (001) β–SiC

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermally induced solid-state reactions between a 70 nm Pt film and a single-crystal (001) β-SiC substrate at temperatures from 300 °C to 1000 °C for various time durations are investigated by 2 MeV He backscattering spectrometry, x-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and cross-sectional transmission electron microscopy. Backscattering spectrometry shows that Pt reacts with SiC at 500 °C. The product phase identified by x-ray diffraction is Pt3Si. At 600–900 °C, the main reaction product is Pt2Si, but the depth distribution of the Pt atoms changes with annealing temperature. When the sample is annealed at 1000 °C, the surface morphology deteriorates with the formation of some dendrite-like hillocks; both Pt2Si and PtSi are detected by x-ray diffraction. Samples annealed at 500–900 °C have a double-layer structure with a silicide surface layer and a carbon-silicide mixed layer below in contact with the substrate. The SiC—Pt interaction is resolved at an atomic scale with high-resolution electron microscopy. It is found that the grains of the sputtered Pt film first align themselves preferentially along an orientation of (111)Pt//(001)SiC without reaction between Pt and SiC. A thin amorphous interlayer then forms at 400 °C. At 450 °C, a new crystalline phase nucleates discretely at the Pt-interlayer interface and projects into or across the amorphous interlayer toward the SiC, while the undisturbed amorphous interlayer between the newly formed crystallites maintains its thickness. These nuclei grow extensively down into the substrate region at 500 °C, and the rest of the Pt film is converted to Pt3Si. Comparison between the thermal reaction of SiC-Pt and that of Si–Pt is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Davis, G. Keiner, M. Shur, J. W. Palmour, and J. A. Edmond, Proc. IEEE 79, 677 (1991).

    Article  CAS  Google Scholar 

  2. B. Maruyama, E. V. Barrera, and L. Rabenberg, in Metal Matrix Composites: Processing and Interfaces, edited by R. K. Everett and R. J. Arsenault (Academic Press, San Diego, CA, 1991), p. 181.

  3. N.A. Papanicolaou, A. Christou, and M. L. Gipe, J. Appl. Phys. 65, 3526 (1989).

    Article  CAS  Google Scholar 

  4. M. Bhatnagar, P. K. McLarty, and B. J. Baliga, IEEE Elec. Dev. Lett. 13, 501 (1992).

    Article  CAS  Google Scholar 

  5. V.M. Bermudez and R. Kaplan, J. Mater. Res. 5, 2882 (1990).

    Article  CAS  Google Scholar 

  6. T. C. Chou, A. Joshi, and J. Wadsworth, J. Mater. Res. 6, 796 (1991).

    Article  CAS  Google Scholar 

  7. Binary Alloy Phase Diagrams, edited by T. B. Massalski, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990).

  8. K. C. Thompson-Russell and J. W. Edington, in Monograph in Practical Electron Microscopy for Materials Science, edited by J. W. Edington (Philips Technical Library, Holland, 1977), Vol. 5, p. 21.

  9. M-A. Nicolet and S. S. Lau, in VLSI Electronics: Microstructure Science, edited by N. G. Einspruch and G. B. Larrabee (Academic Press, New York, 1983), Vol. 6, p. 342.

  10. U. Gösele and K. N. Tu, J. Appl. Phys. 53, 3252 (1982).

    Article  Google Scholar 

  11. F.M. d’Heurle and P. Gas, J. Mater. Res. 1, 205 (1986).

    Article  Google Scholar 

  12. R.W. Bené, J. Appl. Phys. 61, 1826 (1987).

    Article  Google Scholar 

  13. V.I. Dybkov, J. Phys. Chem. Solids 53, 703 (1992).

    Article  CAS  Google Scholar 

  14. T. Sands, Mater. Sci. Eng. B1, 289 (1989).

    Google Scholar 

  15. R. Schmid-Fetzer, in Thermochemistry of Alloys, edited by H. Brodowsky and H-J. Schaller (Kluwer Academic Publishers, Boston, MA, 1989), p. 107.

  16. J.R. Abelson, K.B. Kim, D.E. Mercer, C.R. Helms, R. Sinclair, and T. W. Sigmon, J. Appl. Phys. 63, 689 (1988).

    Article  CAS  Google Scholar 

  17. G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), p. 209.

  18. C. Kittle, Introduction of Solid State Physics, 6th ed. (John Wiley & Sons, Singapore, 1986), p. 55.

  19. C. S. Pai, C. M. Hanson, and S. S. Lau, J. Appl. Phys. 57, 618 (1985).

    Article  CAS  Google Scholar 

  20. F. M. d’Heurle, J. Mater. Res. 3, 167 (1988).

    Article  Google Scholar 

  21. R.M. Walser and R.W. Bené, Appl. Phys. Lett. 28, 624 (1976).

    Article  CAS  Google Scholar 

  22. D-H. Ko and R. Sinclair, J. Appl. Phys. 72, 2036 (1992).

    Article  CAS  Google Scholar 

  23. K.N. Tu and S.R. Herd, Phys. Rev. B 43, 1198 (1991).

    Article  CAS  Google Scholar 

  24. K. Affolter, X-A. Zhao, and M-A. Nicolet, J. Appl. Phys. 58, 3087 (1985).

    Article  CAS  Google Scholar 

  25. J.E. McLeod, M.A.E. Wandt, R. Pretorious, and C.M. Comrie, J. Appl. Phys. 72, 2232 (1992).

    Article  CAS  Google Scholar 

  26. A. W. Searcy and L. N. Finnie, J. Am. Ceram. Soc. 45, 268 (1962).

    Article  CAS  Google Scholar 

  27. R. C. J. Schiepers, F. J. J. van Loo, and G. de With, J. Am. Ceram. Soc. 71, C-284 (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.S., Kolawa, E., Nicolet, MA. et al. Solid-state reaction of Pt thin film with single-crystal (001) β–SiC. Journal of Materials Research 9, 648–657 (1994). https://doi.org/10.1557/JMR.1994.0648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0648

Navigation