Skip to main content
Log in

The mechanism of combustion synthesis of titanium carbonitride

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium carbonitride, TiC0.5N0.5, is synthesized directly by a self-propagating reaction between titanium and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure ≥0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples support a proposed mechanism in which the formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide to form the carbonitride solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  2. H. Pastor, Mater. Sci. Eng. A105/106, 401 (1988).

    Article  Google Scholar 

  3. T. Watanabe, T. Doutsu, K. Shoubu, and Y. Kai, Mater. Sci. Forum 34–36, 561 (1988).

    Google Scholar 

  4. L. Maya, in Better Ceramics Through Chemistry II, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 401.

  5. V. D. Parkhomenko, G. N. Serdyuk, and Yu. I. Krasnokutskii, Fiz. Khim. Obrab. Mater. (Russian) 5, 78–82 (1986).

    Google Scholar 

  6. A. V. Bolotov, V. N. Musolin, A. V. Kolensnikov, and M. N. Filkov, Sixth Symposium on Plasma Chemistry 1, 237–243 (1983).

    CAS  Google Scholar 

  7. D. Seyfeth and G. Mignani, Government Report Announcement Index (US) 88 (11), (1988).

  8. M. Yoshimura, M. Nishioka, and S. Sõmiya, I. Mater. Sci. Lett. 6, 463–465 (1987).

    Google Scholar 

  9. V. D. Lyubimov, G. K. Moiseev, and T. A. Timoshchuk, Neorg. Khim. (Russian) 21 (8), 1321–1324 (1985).

    CAS  Google Scholar 

  10. O. Matsumoto and H. Taki, Proc. The Electrochemical Society 88–5, 486–493 (1988).

    Google Scholar 

  11. H. Yoshimura, Jpn. Kokai Tokyo Koho J P 61 17, 471 (1986).

    Google Scholar 

  12. I. Zalite, Tezisy Dokl. -Konf. Molodykh Nanchn. Rab. Inst. Neorg. Khim., Akad. Nauk Latv. SSSR 5th (Russian), 22–3 (1976).

  13. P. Grieveson, Proc. The British Ceramic Society 8, 137–153 (1967).

    Google Scholar 

  14. J. B. Holt and Z. A. Munir, J. Mater. Sci. 21 (1), 251–259 (1986).

    Article  CAS  Google Scholar 

  15. A. G. Merzhanov and I. P. Borovinskaya, Dok. Akad. Nauk SSSR (Chem. ) 204, 429–432 (1972).

    Google Scholar 

  16. A. I. Kirdyashkin, Y. M. Maksinov, and E. A. Nekrasov, Combust. Explos. Shock Waves 17, 33 (1981).

    Article  CAS  Google Scholar 

  17. O. Yamada, Y. Miyamoto, and M. Koizumi, J. Am. Ceram. Soc. 70 (9), C206–C208 (1987).

    Article  Google Scholar 

  18. S. L. Kharatyan, Y. S. Grigor’ev, and A. G. Merzhanov, Combust. Explos. Shock Waves 11, 21–26 (1975).

    Article  Google Scholar 

  19. Z. A. Munir, S. Deevi, and M. Eslamloo-Grami, High Temp. –High Press. 20, 19–24 (1988).

    CAS  Google Scholar 

  20. M. Eslamloo-Grami and Z. A. Munir, J. Am. Ceram. Soc. 73 (5), 1235–1239 (1990).

    Article  CAS  Google Scholar 

  21. M. Eslamloo-Grami and Z. A. Munir, J. Am. Ceram. Soc. 73 (8), 2222–2227 (1990).

    Article  CAS  Google Scholar 

  22. A. B. Avakian, A. R. Bagramian, I. P. Borovinskaya, S. L. Grigorian, and A. G. Merzhanov, in Combustion Process in Chemical Technology and Metallurgy, Chernogolovka, 1975.

  23. Z. A. Munir, Ceram. Bull. 67, 342 (1988).

    CAS  Google Scholar 

  24. Z. A. Munir and U. Anselmi-Tamburini, Mater. Sci. Rep. 3, 277–365 (1989).

    Article  CAS  Google Scholar 

  25. H. C. Yi and J. J. Moore, J. Mater. Sci. 25, 1159 (1990).

    Article  CAS  Google Scholar 

  26. J. B. Holt and S. D. Dunmead, Annu. Rev. Mater. Sci. 21, 305 (1991).

    Article  CAS  Google Scholar 

  27. Selected Powder Diffraction Data for Metals and Alloys, Data Book First Edition (JCPDS, 1978), Vol. I, pp. 1-260–19-515.

  28. H. J. Goldschmidt, Interstitial Alloys (Plenum Press, New York, 1967), p. 535.

    Book  Google Scholar 

  29. The CSIRO Thermochemistry System (Version V. l), CSIRO Institute of Energy and Earth Resources, Division of Mineral Chemistry, Melbourne, Australia, 1990.

  30. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry (Pergamon Press, New York, 1979).

    Google Scholar 

  31. JANAF Thermochemical Tables, National Bureau of Standards, NBS-37, Washington, DC, June 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslamloo-Grami, M., Munir, Z.A. The mechanism of combustion synthesis of titanium carbonitride. Journal of Materials Research 9, 431–435 (1994). https://doi.org/10.1557/JMR.1994.0431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0431

Navigation