Skip to main content
Log in

Study of cluster-assembled nanophase copper using NMR

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu NMR spectra from cluster-assembled nanophase copper with an average grain size between 5 and 10 nm show a broadened peak, at the normal Knight-shifted frequency for copper metal, which arises from only the central 1/2 to −1/2 transition. The broadening of the central line is associated with a distribution of Knight shifts. A very broad background is observed on either side of that peak, associated with broadening due to internal electric field gradients. Pulsed NMR measurements of the central peak show that virtually all the copper signals are significantly broadened and have a spin-spin relaxation time longer than larger-grained copper samples. The strain within the grains is estimated to be 0.7%. Line shape measurements as a function of spin echo delay time show there are a number of copper sites with longer relaxation times which have a significantly larger broadening. Those sites are tentatively identified as being at or near a grain boundary or free surface. A small orientation effect is observed indicating an anisotropy within the samples. An isochronal anneal of one sample showed significant line narrowing after an anneal at 450 °C consistent with other nanophase metals which show grain growth above 40-50% of the absolute melting temperature. The dependence of NMR linewidth on average grain diameter is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, D. Mukhopadhyay, S. N. Patankar, and F. H. Froes, J. Mater. Res. 7, 2114 (1992).

    Article  CAS  Google Scholar 

  2. B. H. Suits, M. Meng, R. W. Siegel, and Y. X. Liao, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G. J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 137.

  3. W. Dickenscheid, R. Birringer, H. Gleiter, O. Kanert, B. Michel, and B. Günther, Solid State Commun. 79, 683 (1991).

    Article  CAS  Google Scholar 

  4. J. Horváth, R. Birringer, and H. Gleiter, Solid State Commun. 62, 319 (1987).

    Article  Google Scholar 

  5. J. Cousty, R. Peix, and B. Peraillon, Surf. Sci. 107, 586 (1981).

    Article  CAS  Google Scholar 

  6. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  7. R. W. Siegel, MRS Bull. XV, 60 (1990).

    Article  Google Scholar 

  8. W. D. Knight, Solid State Phys. 2, 93 (1956).

    CAS  Google Scholar 

  9. G. H. Stauss, J. Chem. Phys. 40, 1988 (1964).

    Article  CAS  Google Scholar 

  10. O. Kanert and M. Mehring, in NMR–Basic Principles and Progress, edited by P. Diehl, E. Fluck, and R. Kosfeld (Springer-Verlag, Berlin, 1971), Vol. 3, p. 1.

    Google Scholar 

  11. O. Kanert, Phys. Status Solidi 32, 667 (1969).

    Article  CAS  Google Scholar 

  12. J. A. Eastman, M. R. Fitzsimmons, and L. J. Thompson, Philos. Mag. B 66, 667 (1992).

    Article  CAS  Google Scholar 

  13. M. R. Fitzsimmons, J. A. Eastman, M. Miiller-Stach, and G. Wallner, Phys. Rev. B 44, 2452 (1991).

    Article  CAS  Google Scholar 

  14. D. Wolf and J. F. Lutsko, Phys. Rev. Lett. 60, 1170 (1988).

    Article  CAS  Google Scholar 

  15. A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  16. D. C. Ailion, T. A. Case, D. D. Blatter, A. H. Morris, A. G. Cutillo, C. H. Durney, and S. A. Johnson, Bull. Magn. Res. 6 (3), 131 (1984).

    Google Scholar 

  17. L. E. Drain, Proc. Phys. Soc. (London) 80, 1380 (1962).

    Article  CAS  Google Scholar 

  18. G. W. Nieman and J. R. Weertman, Proceedings of the Morris E. Fine Symposium, Detroit, 1990, edited by P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santer (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 243.

    Google Scholar 

  19. R. W. Siegel, Ann. Rev. Mater. Sci. 21, 559 (1991).

    Article  CAS  Google Scholar 

  20. X. Wu, H. Zhang, X. Qin, L. Chen, G. Wang, and R. Fang, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G. J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 149.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suits, B.H., Meng, M., Siegel, R.W. et al. Study of cluster-assembled nanophase copper using NMR. Journal of Materials Research 9, 336–342 (1994). https://doi.org/10.1557/JMR.1994.0336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0336

Navigation