Skip to main content
Log in

Heterogeneous magnetic state in nanocrystalline cupric oxide CuO

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the results of investigations of the structural state and magnetic properties of nanocrystalline cupric oxide samples with average particle sizes of approximately 40 and 13 nm, which were synthesized by the electric explosion and gas phase methods, respectively. The samples have been studied using X-ray diffraction, neutron diffraction, magnetic measurements, high-resolution transmission electron microscopy, and copper nuclear magnetic resonance. It has been shown that, in the initial state, regardless of the synthesis method, CuO nanoparticles are characterized by a heterogeneous magnetic state, i.e., by the existence of long-range antiferromagnetic order, spontaneous magnetization, especially at low temperatures, and paramagnetic centers in the material. The ferromagnetic contribution is probably caused by the formation of magnetic polaron states due to the phase separation induced in the system by excess charge carriers as a result of the existence of point defects (vacancies in the anion sublattice) in the nanocrystalline state. In this state, there is an inhomogeneously broadened nuclear magnetic resonance spectrum, which is a superposition of the spectrum of the initial antiferromagnetic matrix and the spectrum of ferromagnetically ordered regions. At high concentrations of ferromagnetically ordered regions, the antiferromagnetic matrix exhibits a nuclear magnetic resonance spectrum of CuO nanoparticles, predominantly from regions with the ferromagnetic phase. The appearance of magnetization can also be partly due to the frustration of spins in CuO, and this state is presumably localized near the most imperfect surface of the nanoparticles. The magnetic susceptibility of nanoparticles in the initial state in strong magnetic fields is significantly higher than that for the annealed samples, which, most likely, is associated with the influence of the high concentration of magnetic polarons. No correlation between the ferromagnetic contribution and the size of particles is found. In the CuO samples annealed at 400°C in air, when the average size of CuO nanoparticles remains unchanged, the ferromagnetic contribution completely disappears, and the magnetic behavior of the nanoparticles becomes qualitatively similar to the magnetic behavior of bulk CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Nagaev, Phys.—Usp. 38(5), 497 (1995).

    Article  ADS  Google Scholar 

  2. M. Yu. Kagan and K. I. Kugel’, Phys.—Usp. 44(6), 553 (2001).

    Article  ADS  Google Scholar 

  3. E. Dagotto, J. Burgy, and A. Moreo, Solid State Commun. 126, 9 (2003).

    Article  ADS  Google Scholar 

  4. S. A. Makhlouf, H. Al-Attara, and R. H. Kodama, Solid State Commun. 145, 1 (2008).

    Article  ADS  Google Scholar 

  5. R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997).

    Article  ADS  Google Scholar 

  6. S. A. Makhlouf, F. T. Parker, F. E. Spada, and A. E. Berkowitz, J. Appl. Phys. 81, 5561 (1997).

    Article  ADS  Google Scholar 

  7. E. Winkler, R. D. Zysler, M. V. Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, and K. N. Trohidou, Nanotechnology 19, 185702 (2008).

    Article  ADS  Google Scholar 

  8. S. Mandal, K. S. R. Menon, S. K. Mahatha, and S. Banerjee, Appl. Phys. Lett. 99, 232507 (2011).

    Article  ADS  Google Scholar 

  9. M. Jagodic, Z. Jaglicic, A. Jelen, J. B. Lee, Y. M. Kim, H. J. Kim, and J. Dolinsek, J. Phys.: Condens. Matter 21, 215302 (2009).

    ADS  Google Scholar 

  10. A. Ye. Yermakov, M. A. Uimin, A. A. Mysik, V. B. Vykhodets, T. E. Kurennykh, V. I. Sokolov, V. S. Gaviko, N. N. Schegoleva, and N. B. Gruzdev, J. Magn. Magn. Mater. 310, 2102 (2007).

    Article  ADS  Google Scholar 

  11. T. I. Arbuzova, S. V. Naumov, V. L. Arbuzov, K. V. Shal’nov, A. E. Ermakov, and A. A. Mysik, Phys. Solid State 45(2), 304 (2003).

    Article  ADS  Google Scholar 

  12. J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, J. Phys. C: Solid State Phys. 21, 2917 (1988).

    Article  ADS  Google Scholar 

  13. P. J. Brown, T. Chattopadhyay, J. B. Forssyth, V. Nunez, and F. Tasset, J. Phys.: Condens. Matter 3, 4281 (1991).

    ADS  Google Scholar 

  14. M. Ain, A. Menelle, B. M. Wanklyn, and E. F. Bertaut, J. Phys.: Condens. Matter 4, 5327 (1992).

    ADS  Google Scholar 

  15. A. Junod, D. Eckert, G. Triscone, J. Müller, and W. Reichardt, J. Phys.: Condens. Matter 1, 8021 (1989).

    ADS  Google Scholar 

  16. B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys. Rev. B: Condens. Matter 39, 4343 (1989).

    Article  ADS  Google Scholar 

  17. B. X. Yang, J. M. Tranquada, and G. Shirane, Phys. Rev. B: Condens. Matter 38, 174 (1998).

    Article  ADS  Google Scholar 

  18. X. G. Zheng, H. Yamada, D. J. Scanderbeg, M. B. Maple, and C. N. Xu, Phys. Rev. B: Condens. Matter 67, 214516 (2003).

    Article  ADS  Google Scholar 

  19. X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, and Y. Soejima, Phys. Rev. Lett. 85, 5170 (2000).

    Article  ADS  Google Scholar 

  20. T. Tsuda, T. Shimizu, H. Yasuoka, K. Kishio, and K. Kitazawa, J. Phys. Soc. Jpn. 57, 2908 (1988).

    Article  ADS  Google Scholar 

  21. A. Punnoosea and M. S. Seehra, J. Appl. Phys. 91, 7766 (2002).

    Article  ADS  Google Scholar 

  22. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B: Condens. Matter 64, 174420 (2001).

    Article  ADS  Google Scholar 

  23. G. Zheng, C. N. Xu, K. Nishikubo, K. Nishiyama, W. Higemoto, W. J. Moon, E. Tanaka, and E. S. Otabe, Phys. Rev. B: Condens. Matter 72, 014464 (2005).

    Article  ADS  Google Scholar 

  24. T. I. Arbuzova, S. V. Naumov, V. L. Arbuzov, and A. P. Druzhkov, Phys. Solid State 51(5), 953 (2009).

    Article  ADS  Google Scholar 

  25. A. Ye. Yermakov, M. A. Uimin, V. R. Galakhov, A. A. Mysik, O. V. Koryakova, V. G. Kharchuk, V. A. Vykhodetz, V. S. Gaviko, K. Kuepper, S. Robin, and M. Neumann, J. Metastable Nanocryst. Mater. 24–25, 43 (2005).

    Article  Google Scholar 

  26. A. A. Samokhvalov, T. I. Arbuzova, N. A. Viglin, S. V. Naumov, V. R. Galakhov, D. A. Zatsepin, Yu. A. Kotov, O. M. Samatov, and D. G. Kleshchev, Phys. Solid State 40(2), 268 (1998).

    Article  ADS  Google Scholar 

  27. A. Ye. Yermakov, T. A. Feduschak, M. A. Uimin, A. A. Mysik, V. S. Gaviko, O. N. Chupakhin, A. B. Shishmakov, V. G. Kharchuk, L. A. Petrov, Yu. A. Kotov, A. V. Vosmerikov, and A. V. Korolyov, Solid State Ionics 172(1–4), 317 (2004).

    Article  Google Scholar 

  28. W. Wernsdorfer, D. Mailly, and A. Benoit, J. Appl. Phys. 87(5), J094 (2000).

    Google Scholar 

  29. D. D. Awschalom and N. Samarth, J. Magn. Magn. Mater. 200, 130 (1999).

    Article  ADS  Google Scholar 

  30. J. C. Rodriguez, Physica B (Amsterdam) 192, 55 (1993).

    Article  ADS  Google Scholar 

  31. G. Gattow and J. Zemann, Acta Crystallogr. 11, 866 (1958).

    Article  Google Scholar 

  32. Yu. G. Raidugin, V. E. Naish, and E. A. Turov, JETP Lett. 54(11), 650 (1991).

    ADS  Google Scholar 

  33. U. Kobler and T. Chattopadhyay, Z. Phys. B: Condens. Matter 82, 383 (1991).

    Article  ADS  Google Scholar 

  34. W. Neubecka, C. Vettier, F. de Bergevin, F. Yakhou, D. Mannix, L. Rannod, and T. Chatterji, J. Phys. Chem. Solids 62, 2173 (2001).

    Article  ADS  Google Scholar 

  35. T. I. Arbuzova, A. A. Samokhvalov, L. B. Smolyak, B. V. Karpenko, N. M. Chebotaev, and S. V. Naumov, J. Magn. Magn. Mater. 95, 168 (1991).

    Article  ADS  Google Scholar 

  36. S. Mandal, S. Banerjee, and K. S. R. Menon, Phys. Rev. B: Condens. Matter 80, 214420 (2009).

    Article  ADS  Google Scholar 

  37. A. P. Druzhkov, B. A. Gizhevskii, V. L. Arbuzov, E. A. Kozlov, K. V. Shalnov, S. V. Naumov, and D. A. Perminov, J. Phys.: Condens. Matter 14, 7981 (2002).

    ADS  Google Scholar 

  38. V. B. Vykhodets, T. E. Kurennykh, A. E. Ermakov, I. V. Beketov, A. V. Bagazeev, V. S. Gaviko, M. V. Kuznetsov, A. I. Medvedev, M. A. Uimin, K. I. Shabanova, and N. N. Shchegoleva, Nanotechnol. Russ. 8(7–8), 482 (2013).

    Article  Google Scholar 

  39. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  40. S. Verkhovskii, K. Mikhalev, A. Gerashenko, Y. Piskunov, V. Kazantsev, V. Bobrovskii, E. Mitberg, A. Podlesnyak, and A. Mirmelstein, J. Supercond. Nov. Magn. 16, 543 (2003).

    Article  ADS  Google Scholar 

  41. M. Abe, K. Kumagai, S. Awaji, and T. Fujita, Physica C (Amsterdam) 160, 8 (1989).

    Article  ADS  Google Scholar 

  42. A. Ananyev, A. Gerashenko, K. Okulova, S. Verkhovskii, A. Davletshin, V. Arbuzov, and B. Goshchitskii, Appl. Magn. Reson. 18, 235 (2000).

    Article  Google Scholar 

  43. E. L. Nagaev, JETP Lett. 6(1), 18 (1967).

    ADS  MathSciNet  Google Scholar 

  44. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Nat. Mater. 7, 291 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ye. Yermakov.

Additional information

Original Russian Text © A.Ye. Yermakov, M.A. Uimin, A.V. Korolyov, K.N. Mikhalev, A.N. Pirogov, A.E. Teplykh, N.N. Shchegoleva, V.S. Gaviko, I.V. Byzov, V.V. Maikov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 2, pp. 283–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.Y., Uimin, M.A., Korolyov, A.V. et al. Heterogeneous magnetic state in nanocrystalline cupric oxide CuO. Phys. Solid State 57, 296–308 (2015). https://doi.org/10.1134/S1063783415020092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415020092

Keywords

Navigation