Skip to main content
Log in

The crystallography of cleavage fracture in Al3Sc

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The intermetallic compound Al3Sc is a trialuminide with the L12 structure, which deforms easily in compression at room temperature, with yield stresses around 100 MPa. As shown by single crystal compression experiments, slip occurs on {111} planes. In tension Al3Sc fractures transgranularly in a brittle manner. The predominant cleavage plane is {011}. In a scanning electron microscope (SEM) numerous cleavage steps, which are aligned in three major crystallographic directions, are observed. The fracture surfaces almost always show microscopic waviness along the traces of intersecting slip planes. Regions that are flat within the experimental resolution of the SEM are only occasionally observed. Some of the cleavage steps consist of {111} or {001} planes, but others are not distinctly crystallographic. Plastic deformation involving dislocation motion or twinning may have occurred at these steps. Reactions among different types of steps are also observed. One type of cleavage pattern found is strikingly similar to the typical appearance of fracture surfaces of fcc or fcc related materials after stress corrosion cracking. However, this particular pattern is only rarely observed in Al3Sc and can therefore not be taken as evidence for stress corrosion cracking in this material. Our observations indicate that an interpretation of cleavage fracture in Al3Sc in terms of surface energies alone is unlikely to be successful. Similarly, any criterion that categorizes its fracture behavior into either fully brittle or fully ductile is faced with difficulties. A full understanding of the fracture morphology of Al3Sc will therefore require detailed atomistic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamaguchi, Y. Umakoshi, and T. Yamane, in High-Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 275.

  2. J. H. Schneibel and W. D. Porter, in High-Temperature Ordered Intermetallic Alloys III, edited by C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 335.

  3. J. H. Schneibel, P.F. Becher, and J. A. Horton, Scripta Metall. 24, 1069 (1990).

    Article  CAS  Google Scholar 

  4. E. P. George, J. A. Horton, W.D. Porter, and J. H. Schneibel, J. Mater. Res. 5, 1639 (1990).

    Article  CAS  Google Scholar 

  5. J. H. Schneibel and E. P. George, Scripta Metall. 24, 1069 (1990).

    Article  CAS  Google Scholar 

  6. S. A. Brown, K. S. Kumar, and J. D. Whittenberger, Scripta Metall. 24, 2001 (1990).

    Article  CAS  Google Scholar 

  7. S. Zhang, J.P. Nic, and D.E. Mikkola, Scripta Metall. 24, 57 (1990).

    Article  CAS  Google Scholar 

  8. J. P. Nic, S. Zhang, and D. E. Mikkola, Scripta Metall. 24, 1099 (1990).

    Article  CAS  Google Scholar 

  9. D. M. Wee, D. P. Pope, and V. Vitek, Acta Metall. 32, 829 (1984).

    Article  CAS  Google Scholar 

  10. J.H. Schneibel, J.A. Horton, and W.D. Porter, accepted for publication in J. Mater. Sci. Engng.

  11. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  12. J. R. Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

    Article  CAS  Google Scholar 

  13. J. H. Schneibel and P. M. Hazzledine, in High Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 323.

  14. C L. Fu, J. Mater. Res. 5, 971 (1990).

    Article  CAS  Google Scholar 

  15. H. G. F. Wilsdorf, Acta Metall. 30, 1247 (1982).

    Article  CAS  Google Scholar 

  16. M.J. Kaufman and J.L. Fink, Acta Metall. 36, 2213 (1988).

    Article  CAS  Google Scholar 

  17. T. B. Cassagne, W. F. Flanagan, and B. D. Lichter, Metall. Trans. 17A, 703 (1986).

    Article  CAS  Google Scholar 

  18. J. Liu and J.S. Bilello, Philos. Mag. A 38, 297 (1978).

    Article  CAS  Google Scholar 

  19. S.H. Chen, Y. Katz, and W.W. Gerberich, Philos. Mag. A 63, 131 (1991).

    Article  CAS  Google Scholar 

  20. S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister, Philos. Mag. A 64, 851 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneibel, J.H., Hazzledine, P.M. The crystallography of cleavage fracture in Al3Sc. Journal of Materials Research 7, 868–875 (1992). https://doi.org/10.1557/JMR.1992.0868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.0868

Navigation