Skip to main content
Log in

Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nucleation and growth mechanisms during high temperature oxidation of liquid Al−3% Mg and Al−3% Mg−3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Newkirk, A.W. Urquhart, H. R. Zwicker, and E. Breval, J. Mater. Res. 1, 81–89 (1986).

    Article  CAS  Google Scholar 

  2. M. S. Newkirk, H. D. Lesher, D. R. White, C. R. Kennedy, A. W. Urquhart, and T. D. Claar, Ceram. Eng. Sci. Proc. 8, 879–885 (1987).

    Article  CAS  Google Scholar 

  3. M. D. Thouless and A. G. Evans, Acta Metall. 36 (3), 517–522 (1988).

    Article  CAS  Google Scholar 

  4. K. C. Vlach, O. Salas, H. Ni, V. Jayaram, C. G. Levi, and R. Mehrabian, J. Mater. Res. 6, 1982–1995 (1991).

    Article  CAS  Google Scholar 

  5. The microscope experimental setup was initially developed by A. W. Urquhart and A. S. Nagelberg of Lanxide Co. (unpublished research).

  6. A. S. Nagelberg, Solid State Ionics 32/33, 783–788 (1989).

    Article  Google Scholar 

  7. M. K. Aghajanian, N. H. MacMillan, C. R. Kennedy, S. J. Luszcz, and R. Roy, J. Mater. Sci. 24, 658–670 (1989).

    Article  CAS  Google Scholar 

  8. G. D. Preston and L. L. Bircumshaw, Philos. Mag. 20, 706–720 (1935).

    Article  CAS  Google Scholar 

  9. S. Dobinski and M. Niesluchowski, Nature 144, 510–511 (1939).

    Article  CAS  Google Scholar 

  10. W. W. Smeltzer, J. Electrochem. Soc. 105, 67–71 (1958).

    Article  Google Scholar 

  11. C. N. Cochran and W. C. Sleppy, J. Electrochem. Soc. 108, 322–327 (1961).

    Article  CAS  Google Scholar 

  12. R. A. Hine and R. D. Guminski, J. Inst. Met. 89, 417–422 (1961).

    CAS  Google Scholar 

  13. C. Lea and J. Ball, Appl. Surf. Sci. 17, 344–362 (1984).

    Article  CAS  Google Scholar 

  14. T. Rönnhult, U. Rilby, and I. Olefjord, Mater. Sci. Eng. 42, 329–336 (1980).

    Article  Google Scholar 

  15. D. L. Belitskus, Oxid. Met. 3, 313–317 (1971).

    Article  CAS  Google Scholar 

  16. D.L. Belitskus, Oxid. Met. 8, 303–307 (1974).

    Article  CAS  Google Scholar 

  17. F. Stucki, M. Erbudak, and G. Kostorz, Appl. Surf. Sci. 27, 394–400 (1987).

    Article  Google Scholar 

  18. M. Drouzy and C. Mascre, Metall. Rev. 3, 25–46 (1969).

    Google Scholar 

  19. W. Thiele, Aluminium 38, 705–715, 780–786 (1962).

    Google Scholar 

  20. S. Balicki, Prace Inst. Hutnic. 10, 208–213 (1958).

    CAS  Google Scholar 

  21. S. Balicki and J. Leitl, Prace Inst. Hutnic. 11, 71–74 (1959).

    CAS  Google Scholar 

  22. M. V. Mal’tsev, Yu. D. Chistyakov, and M. I. Tsypin, Izv. Akad. Nauk SSSR, Ser. Fiz. (English transl.) 20, 747–750 (1956).

    Google Scholar 

  23. M. Drouzy and D. Fontaine, Rev. de Metall. 775–781 (1970).

    Google Scholar 

  24. M. Drouzy and M. Richard, Fonderie 29, 121–128 (1974).

    CAS  Google Scholar 

  25. I. Haginoya and T. Fukusako, J. Jpn. Inst. Light Met. 24, 364 (1974), republished in English in Trans. Jpn. Inst. Met. 24, 613–619 (1983).

    Article  CAS  Google Scholar 

  26. C. N. Cochran, D. L. Belitskus, and D. L. Kinosz, Metall. Trans. B 8B, 323–332 (1977).

    Article  Google Scholar 

  27. S. Freti, J.D. Bornand, and K. Buxmann, Light Metal Age 40 (5–6), 12, 15–16 (1982).

    Google Scholar 

  28. A. Ya. Radin, Svoistva Rasplavl. Met., Tr. Soveshch. Teor. Liteinykh Protessov, 16th, 116–122 (1972); Chemical Abstracts 82, 90567 (1975).

  29. W. Kahl and E. Fromm, Metall. Trans. B 16B, 47–51 (1985).

    Article  Google Scholar 

  30. B. L. Tiwari, Metall. Trans. A 18A, 1645–1651 (1987).

    Article  Google Scholar 

  31. J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams 5, 74–84, 90–91 (1984).

    Google Scholar 

  32. R. A. Robie, B. S. Hemingway, and J. R. Fisher, U. S. Geol. Survey Bull., 1452 (1979).

    Google Scholar 

  33. R. E. Carter, J. Am. Ceram. Soc. 44 (3), 116 (1961).

    Article  CAS  Google Scholar 

  34. H. Schmalzried and W. Laqua, Oxid. Met. 15 (3/4), 339–353 (1981).

    Article  CAS  Google Scholar 

  35. J. M. Vieira and R. J. Brook, in Advanced Ceramics, edited by W. D. Kingery (Am. Ceram. Soc., Columbus, OH, 1984), Vol. 10, pp. 438–463.

    Google Scholar 

  36. D. A. Weirauch, J. Mater. Res. 3, 729–739 (1988).

    Article  CAS  Google Scholar 

  37. Y. K. Rao and G. R. Belton, in Chemical Metallurgy—A Tribute to Carl Wagner, edited by N. A. Gokcen (TMS-AIME, Warrendale, PA, 1981), pp. 75–96.

    Google Scholar 

  38. A. A. Nayeb-Hashemi and J. B. Clark, Bull. Alloy Phase Diagrams 5, 584–592, 637–638 (1984).

    Google Scholar 

  39. V. G. Kuznetsov and E. S. Makarov, Compt. Rend. Acad. Sci. URSS 23, 245–249 (1939).

    CAS  Google Scholar 

  40. T. A. Badaeva, Doklady Akad. Nauk SSSR 64, 533–536 (1949).

    CAS  Google Scholar 

  41. Metals Handbook, 8th ed. (ASM, Metals Park, OH, 1973), Vol. 8, pp. 396–397.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salas, O., Ni, H., Jayaram, V. et al. Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys. Journal of Materials Research 6, 1964–1981 (1991). https://doi.org/10.1557/JMR.1991.1964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1964

Navigation