Skip to main content
Log in

Dislocations, twins, and grain boundaries in CVD diamond thin films: Atomic structure and properties

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have used transmission electron microscopy techniques to study the nature of dislocations, stacking faults, twins, and grain boundaries in CVD (chemical-vapor-deposition) diamond thin films. Perfect a/2(110) and partial a/6(112) and a/3(111) type dislocations are observed; the partial dislocations are also associated with twins and stacking faults. The most common defect in diamond thin films, particularly in (110) textured films, is Σ = 3 grain boundary or the primary twin. These twins in (110) textured films can lead to formation of fivefold microcrystallites. We have also investigated the splitting of Σ = 9 grain boundary (second order twin) into two Σ = 3 boundaries or primary twins via reaction Σ9 = 2Σ3. A rapid thermal annealing treatment has been shown to result in annealing of Σ = 3 boundaries and produce “defect-free” regions in thin films. A mechanism of annealing (removal) of Σ = 3 boundaries is discussed. Atomic structure and energetics of dislocations, twins, and grain boundaries are calculated using Tersoff potentials. The calculated atomic structure for Σ = 3 boundary is compared with high-resolution TEM images and a good agreement is obtained. These boundaries consist of periodic units of 5–7 rings which are similar to the core structure of 90° a/2<110>{001} dislocations. The energy of the 5–7 rings in the grain boundaries is considerably lower, due to overlapping and strain cancellation effects, than that associated with single dislocations. The 5–7 ring energy and consequently the boundary energy increases as the overlapping effects decrease. An interesting analogy between the diamond and silicon results is drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsumoto and Y. Matsui, J. Mater. Sci. 18, 1785 (1983).

    Article  CAS  Google Scholar 

  2. S. Matsumoto, J. Mater. Sci. Lett. 4, 600 (1985).

    Article  CAS  Google Scholar 

  3. C.P. Chang, D.L. Flamm, D.E. Ibbotson, and J. A. Mucho, J. Appl. Phys. 63, 1744 (1988).

    Article  CAS  Google Scholar 

  4. P. K. Bachmann, W. Drawl, D. Knight, R. Weiner, and R. F. Messier, in Extended Abstracts No. 15, Diamond and Diamondlike Materials Synthesis, edited by G. H. Johnson, A. R. Badzian and M.W. Geis (Materials Research Society, Pittsburgh, PA, 1988), p. 99.

    Google Scholar 

  5. K. Kurihara, K. Sasaki, M. Kawaradi, and N. Koshino, Appl. Phys. Lett. 52, 437 (1988).

    Article  CAS  Google Scholar 

  6. K. Kitahama, K. Hirata, H. Nakamatsu, and S. Kawai, Appl. Phys. Lett. 49, 634 (1986).

    Article  CAS  Google Scholar 

  7. L.M. Hanssen, W. A. Carrington, J.E. Butler, and K. A. Snail, Mater. Lett. 7, 289 (1988).

    Article  CAS  Google Scholar 

  8. A.R. Badzian and R.C. DeVries, Mater. Res. Bull. XXIII, 385 (1988).

    Article  Google Scholar 

  9. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  10. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  11. J. Narayan, A.R. Srivatsa, M. Peters, S. Yokota, and K. Ravi, Appl. Phys. Lett. 53, 1823 (1988).

    Article  CAS  Google Scholar 

  12. J. Narayan, A. R. Srivatsa, and K.V. Ravi, Appl. Phys. Lett. 54, 1659 (1988); J. Narayan (unpublished research).

    Article  Google Scholar 

  13. C. d’Anterroches and A. Bourret, Philos. Mag. A, 783 (1984).

  14. S.R. Phillpot and D. Wolf, Philos. Mag. A. 60, 545 (1989); W. Skrotzi, H. Wendt, C. B. Carter, and D.L. Kohlstedt, Philos. Mag. (1989).

    Article  CAS  Google Scholar 

  15. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  16. J. Tersoff, Phys. Rev. B 38, 9902 (1988a); Phys. Rev. Lett. 61, 2879 (1988); Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  17. T. Mori, H. Fujita, and S. Takemori, Philos. Mag. A 44, 1277 (1981).

    Article  CAS  Google Scholar 

  18. D. P. DiVincenzo, O. L. Alerhard, M. Schluter, and J.W. Wilkins, Phys. Rev. Lett. 56, 1925 (1986).

    Article  CAS  Google Scholar 

  19. W.T. Read, Jr., Dislocations in Crystals (McGraw-Hill, New York, 1953), p. 188.

    Google Scholar 

  20. A.S. Nandedkar and J. Narayan, Philos. Mag. A 56, 625 (1987); Philos. Mag. A 61, 873 (1990); Mater. Sci. and Eng. A 113, 51 (1989).

    Google Scholar 

  21. J. Narayan and A. S. Nandedkar, Philos. Mag. A (in press).

  22. J. Honstra, Physica A 25, 409 (1959); ibid 26, 198 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, J. Dislocations, twins, and grain boundaries in CVD diamond thin films: Atomic structure and properties. Journal of Materials Research 5, 2414–2423 (1990). https://doi.org/10.1557/JMR.1990.2414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2414

Navigation