Skip to main content
Log in

Mechanism of diamond film growth by hot-filament CVD: Carbon-13 studies

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mixed carbon-12/carbon-13 diamond films were synthesized by hot-filament chemical vapor deposition, using mixtures of 13CH4 and 12CH4 or 12C2H2 in H2. The first-order Raman peak at 1332 cm–1 for 12C-diamond was found to shift by 50 cm–1 to 1282 cm–1 for pure 13C-diamond. For mixed-isotope films, the Raman peak frequency shifts linearly between these values as a function of the 13C mole fraction. The mechanism of diamond film growth by hot-filament CVD has been investigated by growth from mixtures of 13CH4 and 12C2H2, using the shifted Raman frequency to determine the relative incorporation rates of 13C and 12C into the film. The 13C mole fraction in the film agrees closely with the 13C mole fraction inferred for the methyl radical but differs substantially from that of acetylene, indicating that the methyl radical is the dominant growth precursor under the conditions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. DeVries, Ann. Rev. Mater. Sci. 17, 161 (1987).

    Article  Google Scholar 

  2. A. R. Badzian and R. C. DeVries, Mater. Res. Bull. XXIII, 385 (1988).

    Article  Google Scholar 

  3. J.C. Angus and C.C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  4. M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986).

    Article  CAS  Google Scholar 

  5. M. Tsuda, M. Nakajima, and S. Oikawa, Jpn. J. Appl. Phys. 26, L527 (1987).

    Article  CAS  Google Scholar 

  6. M. Frenklach and K. E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  7. D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).

    Article  CAS  Google Scholar 

  8. T. Kawato and K. Kondo, Jpn. J. Appl. Phys. 26, 1429 (1987).

    Article  CAS  Google Scholar 

  9. F. G. Celii, P. E. Pehrsson, H.T. Wang, and J. E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Article  CAS  Google Scholar 

  10. F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031 (1989).

    Article  CAS  Google Scholar 

  11. J.E. Butler, F.G. Celii, D. B. Oakes, L.M. Hanssen, W.A. Carrington, and K. A. Snail, “Studies of Diamond Chemical Vapor Deposition,” High Temperature Science (in press).

  12. S. J. Harris, A. M. Weiner, and T. A. Perry, Appl. Phys. Lett. 53, 1605 (1988).

    Article  CAS  Google Scholar 

  13. S. J. Harris and A. M. Weiner, Appl. Phys. Lett. 55, 2179 (1989).

    Article  CAS  Google Scholar 

  14. S.J. Harris, D.N. Belton, A.M. Weiner, and S.J. Schmeig, J. Appl. Phys. 66, 5353 (1989).

    Article  CAS  Google Scholar 

  15. S. J. Harris and A. M. Weiner, J. Appl. Phys. 67, 6520 (1990).

    Article  CAS  Google Scholar 

  16. M. Toyoda, H. Kojima, and H. Sugai, Appl. Phys. Lett. 54, 1507 (1989).

    Article  CAS  Google Scholar 

  17. H. B. Vakil, W. F. Banholzer, R. J. Kehl, and C. L. Spiro, Mater. Res. Bull. XXIV, 733 (1989).

    Article  Google Scholar 

  18. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson, J. Appl. Phys. 65, 3448 (1989).

    Article  CAS  Google Scholar 

  19. L.R. Martin and M.W. Hill, ‘A Flowtube Study of Diamond Film Growth: Methane versus Acetylene,” J. Mater. Sci. Lett. (in press).

  20. M. Frenklach, J. Appl. Phys. 65, 5142 (1989).

    Article  CAS  Google Scholar 

  21. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21, L183 (1982).

    Article  Google Scholar 

  22. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983).

    Article  CAS  Google Scholar 

  23. J. C. Angus, H. A. Will, and W. S. Stanko, J. Appl. Phys. 39, 2915 (1968).

    Article  CAS  Google Scholar 

  24. S. J. Harris, J. Appl. Phys. 65, 3044 (1989).

    Article  CAS  Google Scholar 

  25. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  26. R. M. Chrenko, J. Appl. Phys. 63, 5873 (1988).

    Article  CAS  Google Scholar 

  27. R. H. Hauge, L. Fredin, Z. H. Kafafi, and J. L. Margrave, Appl. Spectroscopy 40, 588 (1986).

    Article  CAS  Google Scholar 

  28. K. Kim and W.T. King, J. Molec. Struct. 57, 201 (1979).

    Article  CAS  Google Scholar 

  29. S. Saëki, M. Mizuno, and S. Kondo, Spectrochim. Acta 32A, 403 (1976).

    Article  Google Scholar 

  30. T. Nakanaga, S. Kondo, and S. Saëki, J. Chem. Phys. 70, 2471 (1979).

    Article  CAS  Google Scholar 

  31. J. Warnatz, in Combustion Chemistry, edited by W. C. Gardiner, Jr. (Springer-Verlag, New York, 1984), p. 197.

    Chapter  Google Scholar 

  32. S. A. Solin and A. K. Ramdas, Phys. Rev. B 1, 1687 (1970).

    Article  Google Scholar 

  33. M.A. Washington and H. Z. Cummins, Phys. Rev. B 15, 5840 (1977).

    Article  CAS  Google Scholar 

  34. Preliminary results from this work were first presented at the SDIO/IST Diamond Technology Initiative Symposium held in Washington, DC in July 1989.

  35. Y. Hirose and Y. Terasawa, Jpn. J. Appl. Phys. 25, L519 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, C.J., D’Evelyn, M.P., Hauge, R.H. et al. Mechanism of diamond film growth by hot-filament CVD: Carbon-13 studies. Journal of Materials Research 5, 2405–2413 (1990). https://doi.org/10.1557/JMR.1990.2405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2405

Navigation