Skip to main content
Log in

Microstructural studies of laser irradiated graphite surfacesa)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure of pulsed laser irradiated graphite surfaces has been elucidated. The pulse fluences range up to 4 J cm−2 with durations no longer than 30 ns. The region exterior to the irradiated spot is littered with ∼0.1 μm diameter carbon spheroids. The boundary region is characterized by both spheroids and torn layers 1–5 μm. in lateral extent. The central region displays carbon spheroids and surface upheavals. The carbon spheroids are attributed to hydrodynamic sputtering of carbon. The surface upheavals and torn carbon layers are attributed to constrained thermal expansion and contraction of the irradiated region. It is estimated that a nearly instantaneous 1000°C temperature change is necessary to cause the observed surface deformation. Pulse fluences in excess of 0.8 J cm−2 cause a thin layer of carbon to melt. This is proven by the fact that the irradiated layer in the solid phase has a turbostratic structure. Electron diffraction experiments and dark-field imaging experiments show that the basal plane grain size of the resolidified material varies from ∼20 Å at the melt threshold to ∼100 Å for samples irradiated with 4.0 J cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Bundy, in Solid State Physics Under Pressure, edited by S. Minomura (Reidel, New York, 1986), p. 1.

  2. J. Steinbeck, Studies of the High Temperature Properties of Graphite and Liquid Carbon Using Pulsed Laser Heating (Ph.D. Thesis, MIT, 1987).

  3. F. P. Bundy, J. Chem. Phys. 38, 618 (1963).

    Article  CAS  Google Scholar 

  4. J. Heremans, C. H. Olk, G. L. Eesley, J. Steinbeck, and G. Dresselhaus, Phys. Rev. Lett. 60, 452 (1988).

    Article  CAS  Google Scholar 

  5. T. Venkatesan, D. C. Jacobson, J. M. Gibson, B. S. Elman, G. Braunstein, and M. S. Dresselhaus, Phys. Rev. Lett. 53, 360 (1984).

    Article  CAS  Google Scholar 

  6. A. M. Malvezzi, N. Bloembergen, and C. Y. Huang, Phys. Rev. Lett. 57, 146 (1986).

    Article  CAS  Google Scholar 

  7. D. H. Reitze, X. Wang, H. Ahn, and M. C. Downer, Phys. Rev. B 40, 11986 (1989).

    Article  CAS  Google Scholar 

  8. G. Braunstein, J. Steinbeck, M. S. Dresselhaus, G. Dresselhaus, B. S. Elman, T. Venkatesan, B. Wilkens, and D. C. Jacobson (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1986), Vol. 51, p. 233.

  9. J. Abrahamson, Carbon 12, 111 (1974).

    Article  CAS  Google Scholar 

  10. P. M. Fauchet and A. E. Siegman, Appl. Phys. Lett. 40, 824 (1982).

    Article  CAS  Google Scholar 

  11. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, Phys. Rev. B 27, 1155 (1983).

    Article  CAS  Google Scholar 

  12. I. W. Boyd, S. C. Moss, T. F. Boggess, and A. L. Smirl, Appl. Phys. Lett. 45, 80 (1984).

    Article  CAS  Google Scholar 

  13. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B 27, 1141 (1983).

    Article  CAS  Google Scholar 

  14. R. Kelly and J. E. Rothenberg, Nucl. Instr. Meth. Phys. B7/8, 755 (1985).

    Article  Google Scholar 

  15. H. M. Musal, Symp. on Optical Materials for High Power Lasers, Boulder, CO, 159 (1979).

    Google Scholar 

  16. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

  17. B. T. Kelly, Physics of Graphite (Applied Science, London, 1981).

    Google Scholar 

  18. G. G. Tibbetts and C. P. Beetz, J. Phys. D 20, 292 (1987).

    CAS  Google Scholar 

  19. S. V. Gaponov, A. A. Gudkov, and A. A. Fraerman, Sov. Tech. Phys. 27, 1130 (1982).

    Google Scholar 

  20. S. J. Thomas, R. F. Harrison, and J. F. Figueira, Appl. Phys. Lett. 40, 200 (1982).

    Article  CAS  Google Scholar 

  21. J. E. Rothenberg and R. Kelly, Nucl. Instr. and Meth. B1, 291 (1984).

    Article  Google Scholar 

  22. J. M. Cowley, Diffraction Physics (North-Holland, New York, 1975).

    Google Scholar 

  23. B. E. Warren, Phys. Rev. 59, 693 (1941).

    Article  CAS  Google Scholar 

  24. M. J. Buerger, Crystal Structure Analysis (Wiley, New York, 1960).

    Google Scholar 

  25. B. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).

  26. M.S. Dresselhaus and J. Steinbeck, Tanso 132, 44 (1988).

    Article  CAS  Google Scholar 

  27. J. Steinbeck, G. Braunstein, J. Speck, M. S. Dresselhaus, C. Y. Huang, A. M. Malvezzi, and N. Bloembergen (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 74, p. 263.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of the text and results were presented at the 1985 and 1987 Fall Meetings of the Materials Research Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, J.S., Steinbeck, J. & Dresselhaus, M.S. Microstructural studies of laser irradiated graphite surfacesa). Journal of Materials Research 5, 980–988 (1990). https://doi.org/10.1557/JMR.1990.0980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0980

Navigation