Skip to main content
Log in

Graphite Surface Microhardening with Femtosecond Laser Pulses

  • Short Communications
  • Published:
High Temperature Aims and scope

Abstract

The effects of direct femtosecond laser processing of a polycrystalline graphite surface are experimentally investigated. The functional graphite surfaces are fabricated at laser intensity of ~1017 W/cm2 in vacuum and then thoroughly analyzed by means of Raman spectroscopy and nanoindentation test. The measured Raman spectra at 257 nm show presence of an amorphous carbon phase containing sp3 hybridized carbon atoms and a discontinuous nanocrystalline diamond film, while the results of microhardness measurements demonstrate a sixteen-fold increase in microhardness as compared to the unirradiated graphite surface. The modulus of elasticity is found to increase nearly by 3.4 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peyre, P., Berthe, L., Scherpereel, X., and Fabbro, R., Mater. Sci., 1998, vol. 33, p. 1421.

    Article  ADS  Google Scholar 

  2. Sano, Y., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., and Ochi, Y., Mater. Sci. Eng., A, 2006, vol. 417, p. 334.

    Article  Google Scholar 

  3. Nakano, H., Tsuyama, M., Miyauti, S., Shibayanagi, T., and Tsukamoto, M., N., Nanoengineering, 2010, vol. 5, no. 2, p. 175.

    Google Scholar 

  4. Nie, X., He, W., Li, Q.-P., Long, N., and Chai, Y., J. Laser Appl., 2013, vol. 25, 042001.

  5. Ocaña, J.L., Porro, J.A., Díaz, M., Ruiz de Lara, K., Correa, C., Gil-Santos, A., and Peral, D., Proc. SPIE, 2013, vol. 8603.

  6. See, D.W., Dulaney, J.L., Clauer, A.H., and Tenaglia, R.D., Surf. Eng., 2002, vol. 18, p. 32.

    Article  Google Scholar 

  7. Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., Appl. Phys. Lett., 2014, vol. 105, 021902.

  8. Tsujino, M., Sano, T., Ogura, T., Okoshi, M., Inoue, N., Ozaki, N., Kodama, R., Kobayashi, K.F., and Hirose, A., Appl. Phys. Express, 2012, vol. 5, 022703.

  9. Kostanovskii, A.V., Zhilyakov, L.A., Pronkin, A.A., and Kirillin, A.V., High. Temp., 2009, vol. 47, p. 136.

    Article  Google Scholar 

  10. Basharin, A.Y., Lysenko, I.Y., and Turchaninov, M.A., High. Temp., 2012, vol. 50, p. 464.

    Article  Google Scholar 

  11. Son, E.E., High. Temp., 2013, vol. 51, p. 351.

    Article  Google Scholar 

  12. Robertson, J., Mater. Sci. Eng., R, 2002, vol. 37, p. 129.

    Article  Google Scholar 

  13. Yasumaru, N., Miyazaki, K., Kiuchi, J., and Sentoku, E., Diamond Relat. Mater., 2011, vol. 20, no. 4, p. 542.

    Article  ADS  Google Scholar 

  14. Loir, A.-S., Garrelie, F., Donnet, C., Subtil, J.-L., Belin, M., Forest, B., Rogemond, F., and Laporte, P., Appl. Surf. Sci., 2005, vol. 247, nos. 1–4, p. 225.

  15. Gruen, D.M., Annu. Rev. Mater. Sci., 1999, vol. 29, p. 211.

    Article  ADS  Google Scholar 

  16. Ferrari, A.C. and Robertson, J., Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, R121405.

  17. Ashitkov, S.I., Agranat, M.B., Kondratenko, P.S., Anisimov, S.I., Fortov, V.E., Temnov, V.V., Sokolowski-Tinten, K., Zhou, P., and von der Linde, D., JETP Lett., 2002, vol. 75, no. 2, p. 87.

    Article  ADS  Google Scholar 

  18. Agranat, M.B., Ashitkov, S.I., Fortov, V.E., Anisimov, S.I., Dykhne, A.M., and Kondratenko, P.S., J. Exp. Theor. Phys., 1999, vol. 88, p. 370.

    Article  ADS  Google Scholar 

  19. Khaliullin, R.Z., Eshet, H., Kühne, T.D., Behler, J., and Parrinello, M., Nat. Mater., 2011, vol. 9, p. 693.

    Article  ADS  Google Scholar 

  20. Santagata, A., De Bonis, A., De Giacomo, A., Dell’Aglio, M., Laurita, A., Senesi, G.S., Gaudiuso, R., Orlando, S., Teghil, R., and Parisi, G.P., J. Phys. Chem. C, 2011, vol. 115, no. 12, p. 5160.

    Article  Google Scholar 

  21. Sano, T., Takahashi, K., Sakata, O., Okoshi, M., Inoue, N., Kobayashi, K.F., and Hirose, A., J. Phys.: Conf. Ser., 2009, vol. 165, no. 1, 012019.

  22. Gaudin, J., Peyrusse, O., Chalupsky, J., Toufarova, M., Vysin, L., Hajkova, V., Sobierajski, R., and Burian, T., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 86, 024103.

  23. Veysset, D., Pezeril, T., Kooi, S., Bulou, A., and Nelson, K.A., Appl. Phys. Lett., 2015, vol. 106, 161902.

  24. Nüske, R., Jurgilaitis, A., Enquist, H., Harb, M., Fang, Y., Håkanson, U., and Larsson, J., Appl. Phys. Lett., 2012, vol. 100, 043102.

  25. Hu, A., Rybachuk, M., Lu, Q.-B., and Duley, W.W., Appl. Phys. Lett., 2007, vol. 91, 131906.

  26. Kanasaki, J., Inami, E., Tanimura, K., Ohnishi, H., and Nasu, K., Phys. Rev. Lett., 2009, vol. 102, 087402.

  27. Maia, F.C.B., Samad, R.E., Bettini, J., Freitas, R.O., Vieira, N.D., Jr., and Souza-Neto, N.M., Sci. Rep., 2015, vol. 5, p. 11812.

    Article  ADS  Google Scholar 

  28. Casiraghi, C., Ferrari, A.C., and Robertson, J., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 085401.

  29. Ferrari, A.C. and Robertson, J., Philos. Trans. R. Soc., A, 2004, vol. 362, p. 2477.

    Article  ADS  Google Scholar 

  30. Zhao, X.-Z., Cherian, K.A., Roy, R., and White, W.B., J. Mater. Res., 1998, vol. 13, no. 7, p. 1974.

    Article  ADS  Google Scholar 

  31. May, P.W., Smith, J.A., and Rosser, K.N., Diamond Relat. Mater., 2008, vol. 17, no. 2, p. 199.

    Article  ADS  Google Scholar 

  32. Gorrini, F., Cazzanelli, M., Bazzanella, N., Edla, R., Gemmi, M., Cappello, V., David, J., Dorigoni, C., Bifone, A., and Miotello, A., Sci. Rep., 2016, vol. 6, 35244.

  33. Kraus, D., Ravasio, A., Gauthier, M., Gericke, D.O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L.B., Schaumann, G., Nagler, B., Barbrel, B., et al., Nat. Commun., 2016, vol. 7, 10970.

  34. Fortov, V.E., Extreme States of Matter, Berlin: Springer, 2011.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Romashevskiy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashevskiy, S.A., Pronkin, A.A., Ashitkov, S.I. et al. Graphite Surface Microhardening with Femtosecond Laser Pulses. High Temp 56, 616–619 (2018). https://doi.org/10.1134/S0018151X18040235

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18040235

Navigation