Skip to main content
Log in

The effect of ion induced damage on the hardness, wear, and friction of zirconia

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microhardness measurements were carried out on ion implanted single crystal Y2O3 stabilized cubic ZrO2. Inert gas ions (Ne, Ar, Xe) and N, Si, Ti, and W were implanted up to fluences of 3 × 1017 ions/cm2. Implantation energies were selected to give equivalent ranges. Comparison of the Knoop microhardness values of ZrO2 implanted with various species over a range of fluences showed that the principal variable causing hardness changes is damage energy and not the ion fluence nor the ion species. For all implants studied, the hardness versus damage energy gives a unified plot. At low doses the hardness rises with increasing deposited damage energy to a value 15% higher than that of unimplanted zirconia. With additional damage the hardness drops to a value 15% lower than that of the unimplanted zirconia. Friction and wear measurements in a pin-on-disk assembly showed very different behavior for high dose versus unimplanted ZrO2. The unimplanted samples showed debris with an associated rise in friction. The implanted system showed much less debris and a constant value of friction even after 10 000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. McHargue, Int. Metals Reviews 3 (2), 49 (1986).

    Google Scholar 

  2. C.J. McHargue, Defect and Diffusion Forum 57–58, 359–380 (1988).

    Article  Google Scholar 

  3. S. J. Bull and T. F. Page, Nucl. Instrum. Methods in Phys. Res. B32, 91–95 (1988).

    Article  Google Scholar 

  4. R. Kelly, Nucl. Instrum. Methods 182/183, 351–378 (1981).

    Article  Google Scholar 

  5. G. C. Farlow, P. S. Sklad, C.W. White, C. J. McHargue, and B. R. Appleton, Mater. Res. Soc. Symp. Proc. 60, 387–394 (1986).

    Article  CAS  Google Scholar 

  6. C. W. White, G. C. Farlow, H. Naramoto, C. J. McHargue, and B. R. Appleton, Mater. Res. Soc. Symp. Proc. 24, 163–172 (1984).

    Article  CAS  Google Scholar 

  7. C. J. McHargue, C. W. White, B. R. Appleton, G. C. Farlow, and J. M. Williams, Mater. Res. Soc. Symp. Proc. 27, 385–393 (1984).

    Article  CAS  Google Scholar 

  8. G. C. Farlow, C. W. White, C. J. McHargue, P. S. Sklad, and B. R. Appleton, Nucl. Instrum. Methods in Phys. Res. B7/8, 541–546 (1985).

    Article  Google Scholar 

  9. M. B. Lewis, Nucl. Instrum. Methods in Phys. Res. B7/8, 530–534 (1985).

    Article  Google Scholar 

  10. H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham, and B. R. Appleton, J. Appl. Phys. 54 (2), 683–698 (1983).

    Article  CAS  Google Scholar 

  11. J. Bull and T. F. Page, J. Mater. Sci. 23, 4217–230 (1988).

    Article  CAS  Google Scholar 

  12. T. Hioki, A. Itoh, S. Noda, H. Doi, J. Kawamoto, and O. Kamigaito, J. Mater. Sci. Lett. 3, 1099–1101 (1984).

    Article  CAS  Google Scholar 

  13. B. R. Appleton, H. Naramoto, C. W. White, O. W. Holland, C. J. McHargue, G. Farlow, J. Narayan, and J. M. Williams, Nucl. Instrum. Methods in Phys. Res. B1, 167–175 (1984).

    Article  Google Scholar 

  14. C. J. McHargue, G. C. Farlow, C. W. White, B. R. Appleton, P. Angelini, and H. Naramoto, Nucl. Instrum. Methods in Phys. Res. B10/11, 569–573 (1987).

    Google Scholar 

  15. C. J. McHargue, G. C. Farlow, C. W. White, J. M. Williams, B. R. Appleton, and H. Naramoto, Mater. Sci. Engr. 69, 123–127 (1985).

    Article  CAS  Google Scholar 

  16. W. C. Oliver, C. J. McHargue, G. C. Farlow, and C. W. White, Mater. Res. Soc. Symp. Proc. 60, 515–523 (1986).

    Article  CAS  Google Scholar 

  17. P. J. Burnett and T. F. Page, J. of Mater. Sci. 19, 3524–3545 (1984).

    Article  CAS  Google Scholar 

  18. G. C. Farlow, P. S. Sklad, C. W. White, and C. J. McHargue, Mater. Res. Soc. Symp. Proc. 27, 395–400 (1984).

    Article  CAS  Google Scholar 

  19. P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, J. Biomed. Mater. Res. 23, 45–61 (1989).

    Article  CAS  Google Scholar 

  20. J. Lankford, W. Wei, and R. Kossowsky, J. Mater. Sci. 22, 2069–2078 (1987).

    Article  CAS  Google Scholar 

  21. W. Wei and J. Lankford, J. Mater. Sci. 22, 2387–2396 (1987).

    Article  CAS  Google Scholar 

  22. W. Wei, J. Lankford, and R. Kossowsky, Mater. Sci. Engr. 90, 307–315 (1987).

    Article  CAS  Google Scholar 

  23. K. L. Legg, J. K. Cochran, Jr., H. F. Solnick-Legg, and X. L. Mann, Nucl. Instrum. Methods in Phys. Res. B7/8, 535–540 (1985).

    Article  Google Scholar 

  24. B. M. U. Scherzer, Sputtering by Ion Bombardment, II, edited by R. Behrisch (Springer Berlin/Heidelberg/NY, 1982).

    Google Scholar 

  25. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods in Phys. Res. 174, 257 (1980).

    Article  CAS  Google Scholar 

  26. L. R. Doolittle, Nucl. Instrum. Methods in Phys. Res. B9, 344 (1985).

    Article  CAS  Google Scholar 

  27. (ASTM C849-81).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, E.L., Hertl, W., Alford, T.L. et al. The effect of ion induced damage on the hardness, wear, and friction of zirconia. Journal of Materials Research 5, 385–391 (1990). https://doi.org/10.1557/JMR.1990.0385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0385

Navigation