Skip to main content
Log in

Thermodynamic parallels between solid-state amorphization and melting

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A thermodynamics-based description, in the form of an extended phase diagram, of melting and solid-state amorphization is proposed which brings out the parallels between these two phenomena and suggests that their underlying causes are apparently the same. Through molecular dynamics simulations we demonstrate that every crystal, in principle, can undergo two different types of melting transitions with characteristic features that are also observed in radiation- and hydrogenation-induced amorphization experiments on ordered alloys. The first type, defined in terms of free energies, is shown to involve the heterogeneous nucleation of the liquid or amorphous phase at extended lattice defects (such as grain boundaries, free surfaces, voids, or dislocations) and subsequent thermally-activated propagation of solid-liquid/amorphous interfaces through the crystal. The second type, arising from a mechanical instability limit described by Born, is homogeneous and does not require thermally-activated atom mobility. It is suggested that the role of chemical and structural disordering, a prerequisite for irradiation- but not hydrogenation-induced solid-state amorphization, is merely to drive the crystal lattice to a critical combination of volume and temperature at which the amorphous phase can form either heterogeneously or homogeneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bloch, J. Nucl. Mater. 6, 203 (1962).

    Article  CAS  Google Scholar 

  2. For recent reviews, see W. L. Johnson, Prog. Mater. Sci. 30, 81 (1986); Solid-State Amorphizing Transformations, edited by R. B. Schwartz and W. L. Johnson (Elsevier Sequoia, The Netherlands, 1988); J. Less-Common Met. 140 (1988).

  3. R.W. Cahn and W. L. Johnson, J. Mater. Res. 1, 724 (1986).

    Article  CAS  Google Scholar 

  4. P. Richet, Nature 331, 56 (1988).

    Article  CAS  Google Scholar 

  5. H. J. Fecht and W. L. Johnson, Nature 334, 50 (1989).

    Article  Google Scholar 

  6. P.R. Okamoto, L.E. Rehn, J. Pearson, R. Bhadra, and M. Grimsditch, J. Less-Common Met. 140, 231 (1988).

    Article  CAS  Google Scholar 

  7. J. L. Tallon, Phil. Mag. 39, 151 (1979); J. L. Tallon and W. H. Robinson, Phil. Mag. 36, 741 (1977); J. L. Tallon, J. Phys. Chem. Solids 41, 837 (1984).

    Article  CAS  Google Scholar 

  8. R. L. Cormia, J. D. Mackenzie, and D. Turnbull, J. Appl. Phys. 34, 2239 (1963).

    Article  CAS  Google Scholar 

  9. J. Daeges, H. Gleiter, and J. H. Perepezko, Phys. Lett. A119, 79 (1986); R. W. Cahn, Nature 323, 668 (1986).

    Article  Google Scholar 

  10. R. M. J. Cotterill, J. Cryst. Growth 48, 582 (1980).

    Article  CAS  Google Scholar 

  11. S. R. Phillpot, J. F. Lutsko, D. Wolf, and S. Yip, Phys. Rev. B 40, 2831 (1989).

    Article  Google Scholar 

  12. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, 1962).

  13. H. Mori, H. Fujita, M. Tendo, and M. Fujita, Scripta Metall. 18, 783 (1984); D. E. Luzzi and M. Meshii, Res. Mechanica 21, 207 (1987).

    Article  CAS  Google Scholar 

  14. H. Mori and H. Fujita, Proc. Yamada Conf. VII on “Dislocations in Solids”, edited by H. Suzuki (Univ. of Tokyo, 1985), p. 563.

  15. W. J. Meng, P. R. Okamoto, L. J. Thompson, B. J. Kestel, and L. E. Rehn, Appl. Phys. Lett. 53, 1820 (1988); W. J. Meng, P. R. Okamoto, and L. E. Rehn, Proc. ASM Symp. on “Science of Advanced Materials”, edited by H. Wiedersich and M. Meshii, Chicago, Sept. 1989 (to be published).

    Article  CAS  Google Scholar 

  16. A. R. Ubbelohde, Molten State of Matter: Melting and Crystal Structure (Wiley, Chichester, 1978).

    Google Scholar 

  17. L. L. Boyer, Phase Transitions 5, 1 (1985).

    Article  CAS  Google Scholar 

  18. R.W. Cahn, Nature 273, 491 (1978).

    Article  Google Scholar 

  19. R.W. Cahn, Nature 323, 668 (1986).

    Article  Google Scholar 

  20. N. G. Ainslie, J. D. Mackenzie, and D. Turnbull, J. Phys. Chem. 65, 1718 (1961).

    Article  CAS  Google Scholar 

  21. P. Buffat and U-P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  22. J. B. Boyce and M. Stutzmann, Phys. Rev. Lett. 54, 562 (1985).

    Article  CAS  Google Scholar 

  23. C. J. Rossouw and S. E. Donnelly, Phys. Rev. Lett. 55, 2960 (1985).

    Article  CAS  Google Scholar 

  24. F. F. Abraham, Adv. Phys. 35, 1 (1986).

    Article  CAS  Google Scholar 

  25. J. F. Lutsko, D. Wolf, S. R. Phillpot, and S. Yip, Phys. Rev. B 40, 2841 (1989).

    Article  CAS  Google Scholar 

  26. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  27. S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Article  CAS  Google Scholar 

  28. J. F. Lutsko, D. Wolf, S. Yip, S. R. Phillpot, and T. Nguyen, Phys. Rev. B 38, 11572 (1988).

    Article  CAS  Google Scholar 

  29. D. Wolf, J. de Phys. Colloq. C4 46, Cr-197 (1985).

    Google Scholar 

  30. J. Frenkel, Phys. Z. Sowjetunion 1, 498 (1932).

    CAS  Google Scholar 

  31. J. Q. Broughton, G. H. Gilmer, and K. A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).

    Article  CAS  Google Scholar 

  32. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  33. J. Ray and A. Rahman, J. Chem. Phys. 80, 4423 (1984); Phys. Rev. B 32, 733 (1985).

    Article  CAS  Google Scholar 

  34. D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Scripta Metall. 19, 897 (1985).

    Article  CAS  Google Scholar 

  35. H. Fujita, H. Mori, and M. Fujita, Proc. 7th Int. Conf. on “High-Voltage Electron Microscopy”, Berkeley, edited by R. M. Fisher, R. Gronsky, and K. H. Westmacott, 233 (1984).

  36. X. L. Yeh, K. Samwer, and W. L. Johnson, Appl. Phys. Lett. 42, 242 (1983).

    Article  CAS  Google Scholar 

  37. R. B. Schwartz and R. R. Petrich, J. Less-Common Met. 140, 171 (1988).

    Article  Google Scholar 

  38. A. Seidel, G. Linker, and O. Meyer, J. Less-Common Met. 145, 189 (1988).

    Article  Google Scholar 

  39. C. Massobrio, V. Pontikis, and G. Martin, Phys. Rev. Lett. 62, 1142 (1989).

    Article  CAS  Google Scholar 

  40. J. Koike, P. R. Okamoto, L. E. Rehn, R. Bhadra, M. Grimsditch, and M. Meshii, MRS Symp. Proc. (to be published).

  41. E. Kröner, J. Eng. Mech. Div. 106, 890 (1980).

    Google Scholar 

  42. T. Egami and Y. Waseda, J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  43. C. S. Nichols and D. Clarke, MRS Symp. Proc. (to be published).

  44. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 3935 (1984).

    Article  Google Scholar 

  45. D. N. Seidman, R. S. Averback, P. R. Okamoto, and A. C. Bailey, MRS Symp. Proc. 51, 349 (1987).

    Article  Google Scholar 

  46. V. Vook, Phys. Rev. 125, 855 (1962).

    Article  Google Scholar 

  47. S. Andersson, Phys. Lett. 33A, 455 (1970).

    Article  Google Scholar 

  48. For a recent review, see P. Ehrhart, K. H. Robrock, and H. Schober, in Physics of Radiation Effects in Crystals, edited by R. A. Johnson and A. N. Orlov (Elsevier, North-Holland, Amsterdam, 1986), pp. 7–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, D., Okamoto, P.R., Yip, S. et al. Thermodynamic parallels between solid-state amorphization and melting. Journal of Materials Research 5, 286–301 (1990). https://doi.org/10.1557/JMR.1990.0286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0286

Navigation