Skip to main content
Log in

Physicochemical characterization of sputtered iridium oxide

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work we characterize sputtered iridium oxide films (SIROF) by differential scanning calorimetry (DSC), x-ray, and impedance spectroscopies. We show that a crystallization transition occurs at ca, 230 °C, and suggest a bilayer model for the sputtered film. The transition results in a crystalline mixture of iridium metal and iridium oxide; this suggests a decomposition-crystallization process of the type 2Ir2O3 ⇉ Ir + 3IrO2. In the bilayer model proposed by us, the layer closer to the substrate would reflect the combined influence of the sputtering conditions and of the substrate, while the properties of the second layer depend on the sputtering conditions alone. The bilayer structure is supported by results obtained by impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gottesfeld and S. Srinivasan, J. Electroanal. Chem. 86, 89 (1978).

    Article  CAS  Google Scholar 

  2. J. Rolewicz, C. Comninellis, E. Plattner, and J. Hinden, Electrochim. Acta 33, 573 (1988).

    Article  CAS  Google Scholar 

  3. J. Mozota and B. E. Conway, J. Electrochem. Soc. 128, 2142 (1981).

    Article  CAS  Google Scholar 

  4. S. Hackwood, L. M. Schiavone, W. C. Dautremont-Smith, and G. Beni, J. Electrochem. Soc. 128, 2569 (1981).

    Article  CAS  Google Scholar 

  5. W. C. Dautremont-Smith, Displays 3, 67 (1982).

    Article  CAS  Google Scholar 

  6. S. Gottesfeld and J. D. E. McIntyre, J. Electrochem. Soc. 126, 742 (1979).

    Article  CAS  Google Scholar 

  7. T. Katsube, I. Lauks, and J. N. Zemel, Sensors and Actuators 2, 399 (1982).

    Article  CAS  Google Scholar 

  8. L. D. Burke, J. K. Mulcahy, and D. P. Whelan, J. Electroanal. Chem. 163, 117 (1984).

    Article  CAS  Google Scholar 

  9. K. Kinoshita and M. J. Madou, J. Electrochem. Soc. 131, 1089 (1984).

    Article  CAS  Google Scholar 

  10. K. Kreider, J. Vac. Sci. Technol. A4, 606 (1986).

    Article  Google Scholar 

  11. G. Papeschi, S. Bordi, M. Caria, L. Criscione, and E Ledda, J. Med. Eng. & Technol. 5, 86 (1981).

    Article  CAS  Google Scholar 

  12. S. M. Bordi, M. Carla, G. Papeschi, and S. Pinzauti, Anal. Chem. 56, 317 (1984).

    Article  CAS  Google Scholar 

  13. L. S. Robblee, J. L. Lefko, and S. B. Brummer, J. Electrochem. Soc. 130, 731 (1983).

    Article  CAS  Google Scholar 

  14. L. S. Robblee, M. M. Mangaudis, E. D. Lasinsky, A. G. Kimball, and S. B. Brummer, Mat. Res. Soc. Symp. 55, 303 (1986).

    Article  CAS  Google Scholar 

  15. X. Beebe and T. L. Rose, IEEE Trans. Biomed. Engn. 35, 494 (1988).

    Article  CAS  Google Scholar 

  16. D. R. Craig, U. S. Patent 0078404A2, 1982.

  17. S. Hackwood, G. Beni, and P. K. Gallagher, Solid State Ionics 2, 297 (1981).

    Article  CAS  Google Scholar 

  18. S. Hackwood, A. H. Dayem, and G. Beni, Phys. Rev. B 26, 471 (1982).

    Article  CAS  Google Scholar 

  19. B. Chapman, Glow Discharge Processes (Wiley Interscience, New York, 1980).

    Google Scholar 

  20. ASTM Powder Diffraction Data Files, JCPDS, Philadelphia, PA.

  21. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  22. G. Lunde, Z. anorg. Chem. 163, 345 (1927).

    Article  CAS  Google Scholar 

  23. D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, Inorg. Chem. 8, 841 (1969).

    Article  CAS  Google Scholar 

  24. D. Michell, D. A. J. Rand, and R. Woods, J. Electroanal. Chem. 84, 117 (1977).

    Article  CAS  Google Scholar 

  25. C. Claus, J. prakt. Chem. 42, 359 (1847).

    Article  Google Scholar 

  26. C. Claus, J. prakt. Chem. 80, 302 (1860).

    Article  Google Scholar 

  27. J. Van Muylder and M. Pourbaix, in Atlas of Electrochemical Equilibria in Aqueous Solutions, edited by M. Pourbaix (Pergamon, Oxford, 1966).

    Google Scholar 

  28. J. W. Dodd and K. H. Tonge, Thermal Methods (J. Wiley & Sons, Chichester, 1987), p. 166.

    Google Scholar 

  29. R. De Levie, Electrochim. Acta 9, 1231 (1964).

    Article  Google Scholar 

  30. J. C. Wang, Electrochim. Acta 33, 707 (1988).

    Article  CAS  Google Scholar 

  31. T. Pajkossy and L. Nyikos, Electrochim. Acta 33, 713 (1988).

    Article  CAS  Google Scholar 

  32. J. R. Macdonald, J. Appl. Phys. 58, 1955 (1985).

    Article  Google Scholar 

  33. S. Gottesfeld and J. D. E. McIntyre, J. Electrochem. Soc. 126, 742 (1979).

    Article  CAS  Google Scholar 

  34. L. D. Burke and R. A. Scannel, J. Electroanal. Chem. 175, 119 (1984).

    Article  CAS  Google Scholar 

  35. P. G. Pickup and V. I. Birss, J. Electroanal. Chem. 240, 185 (1988).

    Article  CAS  Google Scholar 

  36. S. Hackwood, W. C. Dautremont-Smith, G. Beni, L. M. Schiavone, and J. L. Shay, J. Electrochem. Soc. 128, 1212 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurian-Blajeni, B., Boucher, M.M., Kimball, A.G. et al. Physicochemical characterization of sputtered iridium oxide. Journal of Materials Research 4, 440–446 (1989). https://doi.org/10.1557/JMR.1989.0440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0440

Navigation