Skip to main content
Log in

Electron microscopy and krypton adsorption characterization of high-purity MgO powder

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A promising method for the preparation of sizeable quantities of structurally well-defined, highpurity MgO powder is reported. The morphology and surface uniformity of the powder is comparable to that of MgO smokes but with narrow size distribution of particles. Sample characterization of these oxide powders is accomplished by combining structural TEM/STEM examination with krypton gas adsorption isotherms. The latter technique is sensitive to the presence of surface hydroxyl groups and of surface roughness on an atomic scale. Highresolution TEM indicates a perfect cubic morphology, intra-crystallite orientation, and dendritic sintering of cubes. In the STEM mode sharp convergent beam electron diffraction patterns are obtained, and in thick specimen regions Kikuchi lines appear, indicating the absence of crystal defects. After prolonged outgassing to remove surface hydroxyl groups, a krypton adsorption isotherm contains a near vertical submonolayer riser and second layer step along with partial wetting features near saturation. These near-ideal dendritic ceramic powders, therefore, provide a research bridge between single crystal surface studies and large-scale powder technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Shastri, H. B. Chae, M. Bretz, and J. Schwank, J. Phys. Chem. 89, 3761 (1985).

    Article  CAS  Google Scholar 

  2. C. F. Jones, R. A. Reeve, R. Rigg, R. L. Segall, R. St. C. Smart, and P. S. Turner, J. Chem. Soc., Faraday Trans. I 80, 2609 (1984).

    Article  CAS  Google Scholar 

  3. J. G. Dash, R. Ecke, J. Stoltenberg, O. E. Vilches, and O. J. Whitte-more, Jr., J. Phys. Chem. 82, 1450 (1978).

    Article  CAS  Google Scholar 

  4. J. P. Coulomb and O. E. Vilches, J. Phys. (Paris) 45, 1381 (1984).

    Article  CAS  Google Scholar 

  5. J. P. Coulomb, T. S. Sullivan, and O. E. Vilches, Phys. Rev. B 30, 4753 (1984).

    Article  CAS  Google Scholar 

  6. K. Morishige, S. Kittaka, and T. Morimoto, J. Colloid Interface Sci. 89, 86 (1982).

    Article  CAS  Google Scholar 

  7. R. L. Segall, R. St. C. Smart, and P. S. Turner, J. Chem. Soc., Faraday Trans. I 73, 1710 (1977).

    Article  Google Scholar 

  8. C. F. Jones, R. L. Segall, R. St. C. Smart, and P. S. Turner, Proc. R. Soc. London, Ser. A 374, 141 (1981).

    Article  CAS  Google Scholar 

  9. S. Coluccia, A. J. Tench, and R. L. Segall, J. Chem. Soc., Faraday Trans. I 77, 2203 (1981).

    CAS  Google Scholar 

  10. A. F. Moodie and C. E. Warble, J. Cryst. Growth 10, 26 (1971).

    Article  CAS  Google Scholar 

  11. T. Hibi and T. Ogawa, J. Phys. Soc. Jpn. 9, 627 (1954).

    Article  CAS  Google Scholar 

  12. T. Hibi, K. Kambe, and G. Houjo, J. Phys. Soc. Jpn. 10, 35 (1955).

    Article  CAS  Google Scholar 

  13. S. Coluccia, A. J. Tench, and R. L. Segall, J. Chem. Soc., Faraday Trans. I 75, 1769 (1979).

    Article  CAS  Google Scholar 

  14. C. F. Jones, R. F. Segall, R. St. C. Smart, and P. S. Turner, Philos. Mag. A 42, 267 (1980).

    Article  CAS  Google Scholar 

  15. S. Hayashi, M. Nakamori, J. Hirono, and H. Kanamori, J. Phys. Soc. Jpn. 43, 2006 (1977).

    Article  CAS  Google Scholar 

  16. G. Leofanti, M. Solari, G. R. Tauszik, F. Garbassi, S. Galvagno, and J. Schwank, Appl. Catalysis 3, 131 (1982).

    Article  CAS  Google Scholar 

  17. R. S. Gordon and W. D. Kingery, J. Am. Ceram. Soc. 49, 654 (1966).

    Article  CAS  Google Scholar 

  18. J. F. Goodman, Proc. R. Soc. London, Ser. A 247, 346 (1958).

    Article  CAS  Google Scholar 

  19. I. F. Guilliat and N. H. Brett, Philos. Mag. 23, 647 (1971).

    Article  Google Scholar 

  20. P. J. Anderson and R. F. Horlock, Trans. Faraday Soc. 58, 1993 (1962).

    CAS  Google Scholar 

  21. M. Boudart, A. Delbouille, E. G. Derouane, V. Indovina, and A. B. Walters, J. Am. Chem. Soc. 94, 6622 (1972).

    CAS  Google Scholar 

  22. W. Rhodes and B. J. Wuensch, J. Am. Ceram. Soc. 56, 495 (1973).

    CAS  Google Scholar 

  23. F. Freund, A. Martens, and N. Scheikh-ol-Eslami, J. Therm. Anal. 8, 525 (1975).

    CAS  Google Scholar 

  24. F. Freund and V. Sperling, Mater. Res. Bull. 11, 621 (1976).

    CAS  Google Scholar 

  25. V. A. Phillips, H. Opperhauser, and J. L. Kolbe, J. Am. Ceram. Soc. 61, 75 (1978).

    CAS  Google Scholar 

  26. P. D. Garn, B. Kawalek, and J. Chang, Thermochim. Acta 26, 375 (1978).

    CAS  Google Scholar 

  27. H. Terauchi, T. Ohga, and H. Naona, Solid State Commun. 35, 895 (1980).

    CAS  Google Scholar 

  28. R. F. Horlock, P. L. Morgan, and P. J. Anderson, Trans. Faraday Soc. 59, 721 (1963).

    Article  CAS  Google Scholar 

  29. F. C. Frank, in Growth and Perfection of Crystals, edited by R. H. Doremus, B. W. Roberts, and D. Turnbull (Wiley, New York, 1958).

    Google Scholar 

  30. G. Thomas, Transmission Electron Microscopy of Metals (Wiley, New York, 1962), p. 46.

    Google Scholar 

  31. See M. Bienfait, Surface Sci. 162, 411 (1985), for a review of wetting and multilayer adsorption in physisorbed films.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretz, M., Shastri, A.G. & Schwank, J. Electron microscopy and krypton adsorption characterization of high-purity MgO powder. Journal of Materials Research 1, 114–119 (1986). https://doi.org/10.1557/JMR.1986.0114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1986.0114

Navigation