Journal of Flow Chemistry

, Volume 1, Issue 2, pp 74–89 | Cite as

Cost Analysis for a Continuously Operated Fine Chemicals Production Plant at 10 Kg/Day Using a Combination of Microprocessing and Microwave Heating

  • F. Benaskar
  • A. Ben-Abdelmoumen
  • N. G. Patil
  • E. V. Rebrov
  • J. Meuldijk
  • L. A. Hulshof
  • V. Hessel
  • U. Krtschil
  • J. C. Schouten
Full Paper


An extended cost study consisting of 14 process scenarios was carried out to envisage the cost impact of microprocessing and microwaves separately or in combination for two liquid-phase model reactions in fine-chemicals synthesis: (1) Ullmann C–O cross-coupling reaction and (2) the aspirin synthesis. The former, a Cu-catalyzed substitution reaction, was based on an experimental investigation, whereas the latter, a noncatalyzed aromatic esterification reaction, was based on literature data. The cost of 4-phenoxypyridine production, as a pharmaceutical intermediate in the synthesis of vancomycin or vancocin, was compared with that of the synthesis of aspirin, a key example of large-scale fine-chemical production plants. The operating costs in the Ullmann synthesis were found to be related to material-based process (reactant excess, pretreatment, and catalyst synthesis), whereas those in the aspirin synthesis appeared to be related to downstream-based process (workup, waste treatment). The impact of an integrated microwave heating and microprocessing system on profitability was demonstrated with respect to operational cost and chemical productivity. Different modes of microwave heating and catalyst supply were studied and compared with conventional oil-bath-heated systems in batch and continuous processes. The overall costs including profitability breakthrough for a competitive market price of product were obtained from various combinations of heating and processing. In case of the Ullmann synthesis, the CAPEX (capital expenditure) was negligible compared to the OPEX (operational expenditure), whereas in the aspirin synthesis, the CAPEX was found around 40%, both at a production scales of 1–10 kg/day using proposed upscale methods. The source of the catalyst strongly determined the profitability of a continuously operated Ullmann process due to its effect on the chemical performance. Higher energy efficiencies could be attained using single-mode microwave irradiation; however, the energy contribution to the overall cost was found to be negligible. Different scenarios provided a cost-feasible and profitable process; nevertheless, an integrated microwave heating and microflow processing led to a cost-efficient system using a micropacked-bed reactor in comparison to wall-coated microreactor, showing a profit margin of 20%.


cost analysis microwave technology microprocessing flow chemistry catalyzed systems Ullmann-type C—O coupling aspirin synthesis 

Supplementary material

41981_2011_1020074_MOESM1_ESM.pdf (353 kb)
Supplementary material, approximately 362 KB.

References and Notes

  1. 1.
    Kappe, C. O.; Stadler, A. In Microwaves in Organic and Medicinal Chemistry; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, 2006; pp 9–28.CrossRefGoogle Scholar
  2. 2.
    Bogdal, D.; Prociak, A. Chimica Oggi 2007, 25(3), 30–33.Google Scholar
  3. 3.(a)
    Dallinger, D.; Lehmann, H. r.; Moseley, J. D.; Stadler, A.; Kappe, C. O. Org. Process Res. Dev. 2011, 15(4), 841–854CrossRefGoogle Scholar
  4. 3(b).
    Lehmann, H.; LaVecchia, L. Org. Process Res. Dev. 2010, 14(3), 650–656CrossRefGoogle Scholar
  5. 3.(c)
    Moseley, J. D. Chimica Oggi 2009, 27(2), 6–10Google Scholar
  6. 3.(d)
    Moseley, J. D.; Lenden, P.; Lockwood, M.; Ruda, K.; Sherlock, J.-P.; Thomson, A. D.; Gilday, J. P. Org. Process Res. Dev. 2007, 12(1), 30–40CrossRefGoogle Scholar
  7. 3.(e)
    Wolkenberg, S. E.; Shipe, W. D.; Lindsley, C. W.; Guare, J. P.; Pawluczyk, J. M. Curr. Opin. Drug Discovery Dev. 2005, 8(6), 701–708Google Scholar
  8. 3.(f)
    Loupy, A. Microwaves in Organic Synthesis; Wiley: Weinheim, 2006; Vol. 2CrossRefGoogle Scholar
  9. 3.(g)
    Kremsner, J.; Stadler, A.; Kappe, C. O. Top. Curr. Chem. 2006, 266, 233–278.CrossRefGoogle Scholar
  10. 4.
    Chamoin, S. In Advances in Microwave-Assisted Organic Synthesis: MAOS Conference and Exhibition, Budapest, Hungary, 2006.Google Scholar
  11. 5.
    Lehmann, H. In Ernst Schering Foundation Symposium Proceedings, Berlin–Heidelberg, Germany, 2007, Vol. 3, pp 133–149.CrossRefGoogle Scholar
  12. 6.
    Kappe, C. O.; Stadler, A., In Microwaves in Organic and Medicinal Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2006; pp 57–90.CrossRefGoogle Scholar
  13. 7.(a)
    Marafie, J. A.; Moseley, J. D. Org. Biomol. Chem. 2010, 8(9), 2219–2227CrossRefGoogle Scholar
  14. 7.(b)
    Moseley, J. D.; Woodman, E. K. Org. Process Res. Dev. 2008, 12(5), 967–981CrossRefGoogle Scholar
  15. 7.(c)
    Arvela, R. K.; Leadbeater, N. E.; Collins Jr, M. J. Tetrahedron 2005, 61(39), 9349–9355.CrossRefGoogle Scholar
  16. 8.(a)
    Kelly, C. B.; Lee, C.; Leadbeater, N. E. Tetrahedron Lett. 2011, 52(2), 263–265CrossRefGoogle Scholar
  17. 8.(b)
    Pipus, G.; Plazl, I.; Koloini, T., Chem. Eng. J. 2000, 76(3), 239–245CrossRefGoogle Scholar
  18. 8.(c)
    Wilson, N. S.; Sarko, C. R.; Roth, G. P. Org. Process Res. Dev. 2004, 8(3), 535–538.CrossRefGoogle Scholar
  19. 9.
    Shore, G.; Morin, S.; Organ, M. G. Angew. Chem. Int. Ed. 2006, 45(17), 2761–2766.CrossRefGoogle Scholar
  20. 10.
    Benaskar, F.; Hessel, V.; Krtschil, U.; Löb, P.; Stark, A. Org. Process Res. Dev. 2009, 13(5), 970–982.CrossRefGoogle Scholar
  21. 11.
    Bowman, M. D.; Holcomb, J. L.; Kormos, C. M.; Leadbeater, N. E.; Williams, V. A. Org. Process Res. Dev. 2007, 12(1), 41–57.CrossRefGoogle Scholar
  22. 12.
    Engels, V.; Benaskar, F.; Patil, N.; Rebrov, E. V.; Hessel, V.; Hulshof, L. A.; Jefferson, D. A.; Vekemans, J. A. J. M.; Karwal, S.; Schouten, J. C.; Wheatley, A. E. H. Org. Process Res. Dev. 2010, 14(3), 644–649.CrossRefGoogle Scholar
  23. 13.
    Illg, T.; Loeb, P.; Hessel, V. Bioorg. Med. Chem. 2010, 18(11), 3707–3719.CrossRefGoogle Scholar
  24. 14.(a)
    Hartman, R. L.; Naber, J. R.; Buchwald, S. L.; Jensen, K. F. Angew. Chem. Int. Ed. 2010, 49(5), 899–903CrossRefGoogle Scholar
  25. 14.(b)
    Roberge, D. M.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Chim. Oggi 2009, 27(4), 4.Google Scholar
  26. 15.
    Schmalz, D.; Oldenburg, M. H., N.; Grund, M.; Muntermann, H.; Kunz U. Chem. Ing. Tech. 2005, 77(7), 859–866.CrossRefGoogle Scholar
  27. 16.
    Kockmann, N. In Micro Process Engineering; Wiley-VCH Verlag GmbH: Weinheim, 2008; pp 1–45.Google Scholar
  28. 17.(a)
    Schmink, J. R.; Kormos, C. M.; Devine, W. G.; Leadbeater, N. E. Org. Process Res. Dev. 2010, 14(1), 205–214CrossRefGoogle Scholar
  29. 17.(b)
    Nakamura, T.; Nagahata, R.; Kunii, K.; Soga, H.; Sugimoto, S.; Takeuchi, K. Org. Process Res. Dev. 2010, 14(4), 781–786CrossRefGoogle Scholar
  30. 17.(c)
    Moseley, J. D.; Woodman, E. K. Energy Fuels 2009, 23(11), 5438–5447CrossRefGoogle Scholar
  31. 17.(d)
    Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1(4), 467–478CrossRefGoogle Scholar
  32. 17.(e)
    Glasnov, T. N.; Kappe, C. O. Macromol. Rapid Commun. 2007, 28(4), 395–410CrossRefGoogle Scholar
  33. 17.(f)
    Krtschil, U.; Hessel, V.; Kralisch, D.; Kreisel, G.; Kuepper, M.; Schenk, R. Chimia 2006, 60(9), 6CrossRefGoogle Scholar
  34. 17.(g)
    Comer, E.; Organ, M. G. Chem. Eur. J. 2005, 11(24), 7223–7227CrossRefGoogle Scholar
  35. 17.(h)
    Comer, E.; Organ, M. G. J. Am. Chem. Soc. 2005, 127(22), 8160–8167CrossRefGoogle Scholar
  36. 17.(i)
    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28(3), 318–323CrossRefGoogle Scholar
  37. 17.(j)
    Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6(3), 128–141.CrossRefGoogle Scholar
  38. 18.(a)
    Benaskar, F.; Engels, V.; Patil, N. G.; Chaibi, M.; Rebrov, E. V.; Meuldijk, J.; Hessel, V.; Hulshof, L. A.; Wheatley, A. E. H.; Schouten, J. C. 2011, (Unpublished results)Google Scholar
  39. 18.(b)
    Dressen, M. H. C. L.; van de Kruijs, B. H. P.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Org. Process Res. Dev. 2010, 14(2), 351–361CrossRefGoogle Scholar
  40. 18.(c)
    Drevina, V. M.; Markitanova, L. I.; Nesterov, V. M. Khimiko-Farmatsevticheskii Zhurnal 1976, 10(10), 53–55Google Scholar
  41. 18.(d)
    Drevina, V. M.; Nesterov, V. M.; Markitanova, L. I. Khimiko-Farmatsevticheskii Zhurnal 1976, 10(11), 120–122Google Scholar
  42. 18.(e)
    Markitanova, L. I.; Drevina, V. M.; Nesterov, V. M. Khimiko-Farmatsevticheskii Zhurnal 1976, 10(12), 85–88.Google Scholar
  43. 19.(a)
    Dressen, M. H. C. L. 2009Google Scholar
  44. (b).
    Wang, L.-D.; Cui, P. Liaoning Huagong 2009, 38(9), 623.Google Scholar
  45. 20.
    Patil, N. G.; Hermans, A. I. G.; Benaskar, F.; Rebrov, E. V.; Meuldijk, J.; Hessel, V.; Hulshof, L. A.; Schouten, J. C. AIChE Journal: Chemical Engineering Research and Development 2011, (Unpublished results).Google Scholar
  46. 21.(a)
    Protasova, L. N.; Rebrov, E. V.; Glazneva, T. S.; Berenguer-Murcia, A.; Ismagilov, Z. R.; Schouten, J. C. J. Catal. 2010, 271(2), 161–169CrossRefGoogle Scholar
  47. 21.(b)
    Shore, G.; Tsimerman, M.; Organ, M. G. Beilstein J. Org. Chem. 2009, 5, 35Google Scholar
  48. 21.(c)
    Glazneva, T.; Rebrov, E.; Schouten, J.; Paukshtis, E.; Ismagilov, Z. Thin Solid Films 2007, 515(16), 6391–6394.CrossRefGoogle Scholar
  49. 22.
    D’Angelo, N. D.; Peterson, J. J.; Booker, S. K.; Fellows, I.; Dominguez, C.; Hungate, R.; Reider, P. J.; Kim, T.-S. Tetrahedron Lett. 2006, 47(29), 5045–5048.CrossRefGoogle Scholar
  50. 23.
    Benaskar, F.; Engels, V.; Rebrov, E. V.; Patil, N. G.; Meuldijk, J.; Magusin, P. C. M. M.; Mezari, B.; Hessel, V.; Hulshof, L. A.; Thüne, P. C.; Hensen, E. J. M.; Wheatley, A. E. H.; Schouten, J. C. Chem. Eur. J. 2010, in press.Google Scholar
  51. 24.
    Stankiewicz, A. Chem. Eng. Res. Des. 2006, 84(7), 511–521.CrossRefGoogle Scholar
  52. 25.(a)
    Hoogenboom, R.; Wilms, T. F. A.; Schubert, U. S. Polymer Preprints 2008, 49(2), 930–931Google Scholar
  53. 25.(b)
    Graus, W. H. J.; Voogt, M.; Worrell, E. Energy Policy 2007, 35(7), 3936–3951.CrossRefGoogle Scholar
  54. 26.
    After personal discussion with Lauda Company, pump energy for internal circulation of heating medium was determined.Google Scholar
  55. 27.
    In this study, the minimum heating medium volume required for uniform and stable heating was experimentally found to be around fourfold heating medium volume regarding the reaction mixture. At lower heat medium volumes, temperature fluctuations and high temperature gradients result. In conventional lab-scale systems, a much higher volume ratio of medium and reaction mixture is used.Google Scholar
  56. 28.(a)
    Gronnow, M. J.; White, R. J.; Clark, J. H.; Macquarrie, D. J. Org. Process Res. Dev. 2005, 9(4), 516–518CrossRefGoogle Scholar
  57. 28.(b)
    Simmons, H. E.; Smith, R. D., J. Am. Chem. Soc. 1958, 80(19), 5323–5324.CrossRefGoogle Scholar
  58. 29.(a)
    Moseley, J. D.; Kappe, C. O. Green Chem. 2011, 13(4), 794–806CrossRefGoogle Scholar
  59. 29.(b)
    Nüchter, M.; Müller, U.; Ondruschka, B.; Tied, A.; Lautenschläger, W. Chem. Eng. Technol. 2003, 26(12), 1207–1216.CrossRefGoogle Scholar
  60. 30.
    Strauss, C. R. Org. Process Res. Dev. 2009, 13(5), 915–923.CrossRefGoogle Scholar
  61. 31.
    Hoogenboom, R.; Wilms, T. F. A.; Erdmenger, T.; Schubert, U. S. Aust. J. Chem. 2009, 62(3), 236–243.CrossRefGoogle Scholar
  62. 32.
    Razzaq, T.; Kappe, C. O. ChemSusChem 2008, 1(1–2), 123–132.CrossRefGoogle Scholar
  63. 33.
    Godwin, D. R.; Lawton, S. J.; Moseley, J. D.; Welham, M. J.; Weston, N. P. Energy Fuels 2010, 24(10), 5446–5453.CrossRefGoogle Scholar
  64. 34.(a)
    Bruggink, A. Chim. Oggi 1998, 16, 44–47Google Scholar
  65. 34.(b)
    Bruggink, A. In CphI Conference Proceedings 1993, 38–47Google Scholar
  66. 34.(c)
    Berkoff, C. E.; Kamholz, K.; Rivard, D. E.; Wellman, G.; Winicov, H. Chemtech 1986, 1986, 552–559.Google Scholar
  67. 35.
    Benaskar, F.; Engels, V.; Patil, N.; Rebrov, E. V.; Meuldijk, J.; Hessel, V.; Hulshof, L. A.; Jefferson, D. A.; Schouten, J. C.; Wheatley, A. E. H. Tetrahedron Lett. 2010, 51(2), 248–251.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2011

Authors and Affiliations

  • F. Benaskar
    • 1
  • A. Ben-Abdelmoumen
    • 1
  • N. G. Patil
    • 1
  • E. V. Rebrov
    • 2
  • J. Meuldijk
    • 1
  • L. A. Hulshof
    • 3
  • V. Hessel
    • 1
  • U. Krtschil
    • 4
  • J. C. Schouten
    • 1
  1. 1.Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.School of Chemistry and Chemical EngineringQueen’s University BelfastBelfastUK
  3. 3.Applied Organic ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Institut für Mikrotechnik Mainz GmbHChemical Micro and Milli Process TechnologiesMainzGermany

Personalised recommendations