Skip to main content
Log in

Fluorescence Enhancement of Pyrene Measured by Thin-Layer Chromatography with Diode-Array Detection

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

In-situ densitometry for qualitative or quantitative purposes is a key step in thin-layer chromatography. It offers a simple way of quantifying by measuring the optical density of the separated spots directly on the plate. A new TLC scanner has been developed which is able to measure TLC plates or HPTLC plates, at different wavelengths simultaneously, without destroying the plate surface. The system enables absorbance and fluorescence measurements in one run. Fluorescence measurements are possible without filters or other adjustments.

The measurement of fluorescence from a TLC plate is a versatile means of making TLC analysis more sensitive. Fluorescence measurements with the new scanner are possible without filters or special lamps. Improvement of the signal-to-noise ratio is achieved by wavelength bundling. During plate scanning the scattered light and the fluorescence are both emitted from the surface of the TLC plate and this emitted light provides the desired spectral information from substances on the TLC plate. The measurement of fluorescence spectra and absorbance spectra directly from a TLC plate is based on differential measurement of light emerging from sample-free and sample-containing zones.

The literature recommends dipping TLC plates in viscous liquids to enhance fluorescence. Measurement of the fluorescence and absorbance spectra of pyrene spots reveals the mechanism of enhancement of plate dipping in viscous liquids—blocked contact of the fluorescent molecules with the stationary phase or other sample molecules is responsible for the enhanced fluorescence at lower concentrations.

In conclusion, dipping in TLC analysis is no miracle. It is based on similar mechanisms observable in liquids. The measured TLC spectra are also very similar to liquid spectra and this makes TLC spec-troscopy an important tool in separation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sz. Nyiredy (Ed) Planar Chromatography, a Retrospective View for the Third Millennium, Springer, Budapest, 2001.

    Google Scholar 

  2. R.J. Hurtubise, Solid Surface Luminescence Analysis, Marcel Decker, New York, 1981.

    Google Scholar 

  3. W. Funk, V. Dammann, T. Couturier, J. Schiller, and I. Völker, J. High Resol. Chromatogr. Chromatogr. Commun. 9 (1986) 224–235.

    Article  CAS  Google Scholar 

  4. W.R.G. Baeyens and B.L. Ling, J. Planar Chromatogr. 1 (1989) 198–213.

    Google Scholar 

  5. H. Jork, W. Funk, W. Fischer, and H. Wimmer, Thin-Layer Chromatography. Reagents and Detection Methods, Vol 1a, VCH, Weinheim, Germany, 1990.

    Google Scholar 

  6. A.N. Diaz, Anal. Chim. Acta 255 (1991) 297–303.

    Article  Google Scholar 

  7. C.F. Poole, S.K. Poole, Th.A. Dean, and N.M. Chirco, J. Planar Chromatogr. 2 (1989) 180–189.

    CAS  Google Scholar 

  8. R. Wintersteiger, GIT Supplement Chromatographie (1988) 5–11.

    Google Scholar 

  9. S.J. Shaun, H. Ho, T. Butler, and C.F. Poole, J. Chromatogr. 281 (1983) 330–339.

    Article  Google Scholar 

  10. S. Uchiyama and M. Uchiyama, J. Liq. Chromatogr. 3 (1980) 681–691.

    Article  CAS  Google Scholar 

  11. S. Uchiyama and M. Uchiyama, J. Chromatogr. 153 (1978), 135–142.

    Article  CAS  Google Scholar 

  12. B. Spangenberg and K.-F. Klein, J. Chromatogr. A 898 (2000) 265–269.

    Article  CAS  Google Scholar 

  13. B. Spangenberg, B. Ahrens, and K.-F. Klein, Chromatographia 53 (2001) 438–441.

    Article  Google Scholar 

  14. B. Spangenberg and K.-F. Klein, J. Planar Chromatogr. 14 (2001) 260–265.

    Article  CAS  Google Scholar 

  15. B. Spangenberg, P. Post, and S. Ebel, J. Planar Chromatogr. 15 (2002) 11–18.

    Article  Google Scholar 

  16. J. Stroka, B. Spangenberg, and E. Anklam, J. Liq. Chromatogr. Related. Technol. 25 (2002) 1497–1513.

    Article  CAS  Google Scholar 

  17. H. Hellmann, Fresenius Z. Anal. Chem. 314 (1983) 125–128.

    Article  CAS  Google Scholar 

  18. J.B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.

    Google Scholar 

  19. P.C. Fernando, A. Arietta, V.L. Cebolla, L. Membrado, M.P. Domingo, P. Henrion, and J. Vela, Anal. Chem. 72 (2000) 1759–1766.

    Article  Google Scholar 

  20. J.B.F. Lloyed, Analyst 100 (1975) 529–539.

    Article  Google Scholar 

  21. F. Pragst, M. Herzel, S. Herre, B.-T. Erxleben, and M. Rothe, UV Spectra of Toxic Compounds, Dieter Helm, Heppenheim, 2001.

    Google Scholar 

  22. A. Sanz-Medel, M.M.F. Perez, M. de la Guardia Cirugeda, and J.L.C. Dominguez, Anal. Chem. 58 (1986) 2161–2166.

    Article  CAS  Google Scholar 

  23. J.F. Lawrence and R.W. Frei, J. Chromatogr. 66 (1972) 93–99.

    Article  CAS  Google Scholar 

  24. E. Kagan and P.J. Quinn, Eur. J. Biochem. 171 (1988) 661–667.

    Article  CAS  Google Scholar 

  25. S. Uchiyama and M. Uchiyama, J. Chromatogr. 262 (1983) 340–345.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spangenberg, B., Lorenz, K. & Nasterlack, S. Fluorescence Enhancement of Pyrene Measured by Thin-Layer Chromatography with Diode-Array Detection. JPC-J Planar Chromat 16, 331–337 (2003). https://doi.org/10.1556/JPC.16.2003.5.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/JPC.16.2003.5.1

Key Words

Navigation