Skip to main content
Log in

Continuous-Flow Difluoromethylation with Chlorodifluoromethane under Biphasic Conditions

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Herein, we present the development of a continuous-flow process for a difluoromethylation with difluorocarbene as the reactive reagent. The difluoromethylated product is a key intermediate during the synthesis of eflornithine, a pharmaceutical that is on the World Health Organization’s Model List of Essential Medicines. The developed procedure uses inexpensive and commercially available chlorodifluoromethane (CHF2Cl, Freon 22) as difluorocarbene source. Deprotonation of CHF2Cl with NaOH in a biphasic mixture of organic solvent-water generates the carbene. A fast subsequent reaction of the difluorocarbene with the substrate generates the desired product with excellent selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organofluorine Compounds in Medicinal Chemistry & Biomedical Applications, R. Filler; Z. Kobayashi; L. M. Yagupolskii, Eds.; Elsevier: Amsterdam, 19

    Google Scholar 

  2. Meyskens, F. L.; Gerner, E. W. Jr. Clin. Cancer Res. 1999, 5, 945–951

    CAS  Google Scholar 

  3. Furet, Y.; Duong, T. H.; Combescot, C.; Breteau, M. Pathol. Biol. 1987, 35, 398–404.

    CAS  Google Scholar 

  4. Mettler, H.; Greth, E. (Lonza AG), 2-Difluormethyl-2-cyanethylmalonsäureniedrigalkylester, CH672124A5, Oct. 1989.

  5. Ni, C.; Hu, J. Synthesis 2014, 46, 842–863

    Article  Google Scholar 

  6. Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585–1632.

    Article  CAS  Google Scholar 

  7. Hydrochlorofluorocarbons, such as CHF2Cl, have high global warming and ozone depletion potential. Their production and consumption are controlled under the Montreal Protocol.

  8. Shen, T. Y.; Lucas, S.; Sarett, L. H. Tetrahedron Lett. 1961, 2, 43–47

    Article  Google Scholar 

  9. Kosuge, S.; Nakai, H.; Kurono, M. Prostaglandins 1979, 18, 737–743

    Article  CAS  Google Scholar 

  10. Tsushima, T.; Kawada, K.; Ishihara, S.; Uchida, N.; Shiratori, O.; Hiagaki, J.; Hirata, M. Tetrahedron 1988, 44, 5375–5387

    Article  CAS  Google Scholar 

  11. McDonald, I. A.; Lacoste, J. M.; Bey, P.; Palfreyman, M. G.; Zreika, M. J. Med. Chem. 1985, 28, 186–193

    Article  CAS  Google Scholar 

  12. McDonald, I. A.; Bey, P. Tetrahedron Lett. 1985, 26, 3807–3810

    Article  CAS  Google Scholar 

  13. Bey, P.; Fozard, J.; Lacoste, J. M.; McDonald, I. A.; Zreika, M.; Palfreyman, M. G. J. Med. Chem. 1984, 27, 9–10.

    Article  CAS  Google Scholar 

  14. Bey, P.; Schirlin, D. Tetrahedron Lett. 1978, 52, 5225–5228

    Article  Google Scholar 

  15. Seki, M.; Suzuki, M.; Matsumoto, K. Biosci. Biotechnol. Biochem. 1993, 57, 1024–1025

    Article  CAS  Google Scholar 

  16. Bey, P.; Gerhart, F.; Dorsselaer, V. V.; Dansin, C. J. Med. Chem. 1983, 26, 1551–1556

    Article  CAS  Google Scholar 

  17. Schirlin, D.; Gerhart, F.; Hornsperger, J. M.; Hamon, M.; Wagner, J.; Jung, M. J. J. J. Med. Chem. 1988, 31, 30–36

    Article  CAS  Google Scholar 

  18. Tsushima, T.; Kawada, K.; Shiratori, O.; Uchida, N. Heterocycles 1985, 23, 45–49

    Article  CAS  Google Scholar 

  19. Nishide, K.; Kobori, T.; Tunemoto, D.; Kondo, K. Heterocycles 1987, 26, 633–640.

    Article  CAS  Google Scholar 

  20. Bey, P.; Vevert, J.-P. Tetrahedron Lett. 1978, 14, 1215–1218

    Article  Google Scholar 

  21. Bey, P.; Vevert, J.-P.; Dorsselaer, V. V.; Kolb, M. J. Org. Chem. 1979, 44, 2732–2742.

    Article  CAS  Google Scholar 

  22. Tsushima, T.; Kawada, K. Tetrahedron Lett. 1985, 26, 2445–2448.

    Article  CAS  Google Scholar 

  23. Jończyk, A.; Nawrot, E.; Kisielewski, M. J. Fluorine Chem. 2005, 126, 1587–1591.

    Article  Google Scholar 

  24. Nawrot, E.; Jonczyk, A. J. Fluorine Chem. 2006, 127, 943–947.

    Article  CAS  Google Scholar 

  25. Nawrot, E.; Jonczyk, A. J. Fluorine Chem. 2009, 130, 466–469.

    Article  CAS  Google Scholar 

  26. The advantages of continuous-flow processes were thoroughly reviewed: (a) Wiles, C.; Watts, P. Green Chem. 2014, 16, 55–62

    Article  CAS  Google Scholar 

  27. Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449–3464

    Article  CAS  Google Scholar 

  28. Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688–6728

    Article  CAS  Google Scholar 

  29. Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem. 2013, 6, 746–789

    Article  CAS  Google Scholar 

  30. Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849–8869

    Article  CAS  Google Scholar 

  31. McQuade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78, 6384–6389

    Article  CAS  Google Scholar 

  32. Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892–4928.

    Article  CAS  Google Scholar 

  33. Dehmlow, E. V. Angew. Chem., Int. Ed. Engl. 1974, 13, 170–179.

    Article  Google Scholar 

  34. The application of continuous-flow microreactors for organic synthesis under biphasic conditions has been previously demonstrated. For selected examples, see: (a) Ahmed, B.; Barrow, D.; Wirth, T. Adv. Synth. Catal. 2006, 348, 1043–1048

    Article  CAS  Google Scholar 

  35. Damm, M.; Gutmann, B.; Kappe, C. O. ChemSusChem 2013, 6, 978–982

    Article  CAS  Google Scholar 

  36. Plouffe, P.; Roberge, D. M.; Macchi, A. Chem. Eng. J. 2016, 300, 9–19

    Article  CAS  Google Scholar 

  37. Reichart, B.; Kappe, C. O.; Glasnov, T. N. Synlett 2013, 24, 2393–2396

    Article  CAS  Google Scholar 

  38. Illg, T.; Hessel, V.; Löb, P.; Schouten, J. C. Chem. Eng. J. 2011, 167, 504–509.

    Article  CAS  Google Scholar 

  39. http://www.ehrfeld.com; Ehrfeld Mikrotechnik BTS GmbH homepage (accessed on June 9th of 2017).

  40. Mielke, E.; Roberge, D. M.; Macchi, A. J. Flow Chem. 2016, 6, 279–287.

    Article  Google Scholar 

  41. http://www.uniqsis.com; Uniqsis Ltd homepage (accessed on June 9th of 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oliver Kappe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutmann, B., Hanselmann, P., Bersier, M. et al. Continuous-Flow Difluoromethylation with Chlorodifluoromethane under Biphasic Conditions. J Flow Chem 7, 46–51 (2017). https://doi.org/10.1556/1846.2017.00005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2017.00005

Keywords

Navigation