Skip to main content
Log in

Wing asymmetry of a butterfly community: is altitude a source of stress?

  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

We present a novel analysis of fluctuating asymmetry (FA) for butterfly wings at the community-level, along an altitudinal gradient. FA is an important biomonitoring tool that detects deviations of perfect symmetry in bilateral characters, assuming that genetic and/or environmental factors can be a source of stress. This study evaluated the effects of increased altitude on the symmetry of butterfly wings, testing the hypothesis that FA should increase with increased elevation in a tropical mountain. Butterflies were sampled along an altitudinal gradient of 800 to 1.400 m and forewings were detached, scanned and evaluated for symmetry. Length, width and area of the right and left forewings were measured as surrogates for FA and then combined into an index taking into account the variability of wing sizes of the whole butterfly community. We observed true patterns of FA in the length, width and area of the wings, and wing FA area increased with increased altitude. This study pioneered the analysis of FA for a community of butterflies and FA was efficient to detect developmental instability indicated by imperfections in butterfly wings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

FA:

Fluctuating Asymmetry

GLM:

Generalized Linear Model

L:

Left Wing

N:

Abundance

R:

Right Wing

S:

Richness

V:

Sample Variance

W:

Wing Trait

References

  • Adamski, P. and Z.J. Witowski. 2002. Increase in fluctuating asymmetry during a population extinction: the case of the apollo butterfly Parnassius apollo frankenbergeri in the Pieniny Mts. Biologia 57:597–601.

    Google Scholar 

  • Aguirre-Gutiérrez, J., M.F. WallisDeVries, L. Marshall, M. Zelfde, A. Villalobos-Arámbula, B. Boekelo, H. Bartholomeus, M. Franzén and J.C. Biesmeijer. 2017. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 26:1126–1137.

    Article  Google Scholar 

  • Alves-Silva, E., J.C. Santos and T.G. Cornelissen. 2018. How many leaves are enough? The influence of sample size on estimates of plant developmental instability and leaf asymmetry. Ecol. Indic. 89:912–924.

    Article  Google Scholar 

  • Anciães, M. and M.Â. Marini. 2000. The effects of fragmentation on fluctuating asymmetry on passerine birds of Brazilian tropical forests. J. Appl. Ecol. 37:1013–1028.

    Article  Google Scholar 

  • Beasley, D.A.E., A. Bonisoli-Alquati and T.A. Mousseau. 2013. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis. Ecol. Indic. 30:218–226.

    Article  Google Scholar 

  • Cirino, J.F. and J.E. Lima. 2008. Contingent valuation of the Environmental Protection Area (APA) São José –MG: a case study. Rev. Econ. Sociol. Rural 46:647–672.

    Article  Google Scholar 

  • Cornelissen, T. and P. Stiling. 2011. Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod-Plant Interact. 5:59–69.

    Article  Google Scholar 

  • Despland, E., R. Humire and S.S. Martín. 2012. Species richness and phenology of butterflies along an altitude gradient in the desert of Northern Chile. Arct. Antarct. Alp. Res. 44:423–431.

    Article  Google Scholar 

  • Eterovick, P.C., B.L. Sloss, J.A.M. Scalzo and R.A. Alford. 2016. Isolated frogs in a crowded world: Effects of human-caused habitat loss on frog heterozygosity and fluctuating asymmetry. Biol. Conserv. 195:52–59.

    Article  Google Scholar 

  • Fernandes, G.W. 2016. Ecology and Conservation of Mountaintop Grasslands in Brazil, 1st ed., Springer, São Paulo.

    Book  Google Scholar 

  • Fernandes, G.W., H.A. Almeida, C.A. Nunes, J.H.A. Xavier, N.S. Cobb, M.A.A. Carneiro, T. Cornelissen, F.S. Neves, S.P. Ribeiro, Y.R.F. Nunes, A.C.V. Pires and M.V. Beirão. 2016a. Cerrado to rupestrian grasslands: Patterns of species distribution and the forces shaping them along an altitudinal gradient. In: G.W. Fernandes (ed.), Ecology and Conservation of Mountaintop Grasslands in Brazil, 1st ed. Springer, São Paulo. pp. 345–377.

    Chapter  Google Scholar 

  • Gonzaga, A.P.D., A.T. Oliveira-Filho, E.L.M. Machado, P. Hargreaves and J.N.M. Machado. 2008. Floristic-structural diagnosis of the arboreal component of the Serra de São José forest, Tiradentes, MG, Brazil. Acta bot. bras. 22:505–520.

    Article  Google Scholar 

  • González-Esquivel, J.G., A. González-Rodríguez and P. Cuervas-Reyes. 2015. Importance of urbanization on patterns of fluctuating asymmetry richness and abundance of Lepidoptera. Bol. Soc. Mex. Ento. 1:88–93.

    Google Scholar 

  • Graça, M.B., P.A.C.L. Pequeno, E. Franklin, J.L.P. Souza and J.W. Morais. 2017. Taxonomic, functional, and phylogenetic perspectives on butterfly spatial assembly in northern Amazonia. Ecol. Entomol. 42:816–826.

    Article  Google Scholar 

  • Henriques, N.R., M.V. Beirão, E. Brasil and T. Cornelissen. 2019. Butterflies (Lepidoptera: Papilionoidea) from the campos rupestres of Serra de São José, Minas Gerais, Brazil. Biota Neotrop. 19:e20180655.

    Article  Google Scholar 

  • Hodkinson, I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80:489–513.

    Article  Google Scholar 

  • Javal, M., G. Roux, A. Roques and D. Sauvard. 2017. Asian long-horned beetle dispersal potential estimated in computer-linked flight mills. J. Appl. Entomol. 142:282–286.

    Article  Google Scholar 

  • Jentzsch, A., G. Köhler and J. Schumacher. 2003. Environmental stress and fluctuating asymmetry in the grasshopper Chorthippus parallelus (Acrididae: Gomphocerinae). Zoology 106:117–125.

    Article  Google Scholar 

  • Kozlov, M.V., T. Cornelissen, D.E. Gavrikov, M.A. Kunavin, A.D. Lama, J.R. Milligan, V. Zverev and E.L. Zvereva. 2017. Reproducibility of fluctuating asymmetry measurements in plants: Sources of variation and implications for study design. Ecol. Indic. 73:733–740.

    Article  Google Scholar 

  • Lashkari, M., M.G. Hentz and L.M. Boykin. 2015. Morphometric comparisons of Diaphorina citri (Hemiptera: Liviidae) populations from Iran, USA and Pakistan. PeerJ 3:e946.

    Article  Google Scholar 

  • Leonard, R.J., K.K.Y. Wat, C. McArthur and D.F. Hochuli. 2018. Urbanisation and wing asymmetry in the western honey bee (Apis mellifera, Linnaeus 1758) at multiple scales. PeerJ:e5940.

  • McCain, C.M. and J.A. Grytnes. 2010. Elevation gradients in species richness. In: Jones, H. (ed.), Encyclopedia of Life Science, John Wiley and Sons, Chichester. doi: 10.1002/9780470015902. a0022548.

    Google Scholar 

  • Modiba, R.V., G.S. Joseph, C.L. Seymour, P. Fouché and S.H. Foord. 2017. Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. Biol. Conserv. 21:46–54.

    Article  Google Scholar 

  • Møller, A.P. 1997. Developmental stability and fitness: a review. Am. Nat. 149:916–932.

    Article  Google Scholar 

  • Møller, A.P. and J.P. Swaddle. 1997. Asymmetry, Developmental Stability and Evolution. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Palmer, A.R. and C. Strobeck. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annu. Rev. Ecol. Evol. Syst. 391:421.

    Google Scholar 

  • Pecl, G.T., M.B. Araújo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I. Cheng, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengard, L. Falconi, S. Ferrier, S. Frusher, R.A. Garcia, R.B. Griffis, A.J. Hobday, C. Janion-Scheepers, M.A. Jarzyna, S. Jennings, J. Lenoir, H.I. Linnetved, V. Y. Martin, P.C. McCormack, J. McDonald, N.J. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, E. Popova, S.A. Robinson, B.R. Scheffers, J.D. Shaw, C.J.B. Sorte, J.M. Strugnell, J.M. Sundat, M. Tuanmu, A. Vergés. C. Villanueva, T. Wernberg, E. Wapstra and S.E. Williams. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214.

    Article  Google Scholar 

  • R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing [Internet]. Viena, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Sanseverino, A.M. and J.L. Nessimian. 2008. Fluctuating asymmetry in aquatic organisms and its application for the evaluation of environmental impacts. Oecologia Brasiliensis 12:382–405.

    Google Scholar 

  • Santos, J.P., C.A. Iserhard, M.O. Teixeira and H.P. Romanowski. 2011. Fruit-feeding butterflies guide for subtropical Atlantic Forest and Araucaria Moist Forest in State of Rio Grande do Sul, Brazil. Biota Neotrop. 11:253–274.

    Article  Google Scholar 

  • Schneider, C.A., W.S. Rasband, W.S. and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7):671–675.

    Article  CAS  Google Scholar 

  • Talloen, W., S. Van Dongen, H. Van Dyck and L. Lens. 2009. Environmental stress and quantitative genetic variation in butterfly wing characteristics. Evol. Ecol. 23:473–485.

    Article  Google Scholar 

  • Tembotova, F.A., A.H. Amshokova, E.P. Kononenko and E.A. Kuchinova. 2018. Development stability of the skull of two rodent species (Mammalia, Rodentia) in anthropogenic and the environment of Central Caucasus mountains. AD ALTA-Journal of Interdisciplinary Research 8:35–39.

    Google Scholar 

  • Thomas, C.D., J.K. Hill and O.T. Lewis. 1998. Evolutionary consequences of habitat fragmentation in a localized butterfly. J. Anim. Ecol. 67:485–497.

    Article  Google Scholar 

  • Vogel, H.F., C.H. Zawadzki, G.S. Silva, C.C.O. Ramos and F.C. Bechara. 2012. Fluctuating asymmetry: Early data from a taxocenose of thrushes (Passeriformes, Turdidae) in an urban park in the mid-south region of the state of Paraná, Brazil. Publicatio UEPG: Ciências Biológicas e da Saúde 18:25–30.

    Google Scholar 

  • Wells, C., A. Munn and C. Woodworth. 2018. Geomorphic morphometric differences between populations of Speyeria diana (Lepidoptera: Nymphalidae). BioOne 101:195–202.

    Google Scholar 

  • Wilsey, B.J., E. Haukioja, J. Koricheva and M. Sulkinoja. 1998. Leaf fluctuating asymmetry increases with hybridization and elevation in tree-line birches. Ecology 79:2092–2099.

    Article  Google Scholar 

  • Windig, J.J., P.T. Rintamäki, A. Cassel and S. Nylin. 2000. How useful is fluctuating asymmetry in conservation biology: Asymmetry in rare and abundant Coenonympha butterflies. J. Insect Conserv. 4:253–261.

    Article  Google Scholar 

  • Yuto, C.M.M., L. Lumogdang and R.M. Tabugo. 2016. Fluctuating asymmetry as an indicator of ecological stress in Rhinocypha colorata (Odonata: Chlorocyphidae) in Iligan City, Mindanao, Philippines. Entomol. Appl. Sci. Lett. 3:13–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Henriques.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques, N.R., Cornelissen, T. Wing asymmetry of a butterfly community: is altitude a source of stress?. COMMUNITY ECOLOGY 20, 252–257 (2019). https://doi.org/10.1556/168.2019.20.3.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/168.2019.20.3.5

Keywords

Navigation