Skip to main content
Log in

Modulation of Polyamines during Grain Development under Different Concentrations of Nitrogen in Wheat

  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

The polyamine (PAs), putrescine (Put), spermidine (Spd) and spermine (Spm) are small aliphatic amines that ubiquitous in all living organisms. PA metabolism in higher plants is involved in both biotic and abiotic stress responses, and also influenced by nutrient deficiency. Accumulated evidence suggests that in plants the cellular titers of PAs are affected by various nitrogenous compounds. Therefore, the present study analyzed the effects of different nitrogen levels viz. recommended doses of nitrogen (RDN, 120 kg N/ha), sub-optimal N dose (RDN −25%, 90 kg N/ha) and supra-optimal N dose (RDN +25%, 150 kg N/ha) on PA metabolism in grains of six wheat genotypes at 15 days post anthesis (DPA) and 30 DPA. The activities of polyamine synthesizing enzymes (arginine decarboxylase, ornithine decarboxylase), catabolizing (diamine oxidase, polyamine oxidase) and the PA content were increased at supra-optimal nitrogen dose as compared to RDN. Whereas at sub-optimal nitrogen dose, higher activity of polyamine catabolizing enzymes results in speeding up oxidation of various PAs to cope up with nitrogen deficiency in plant. In relation to PA content, Put was found to be higher at early stage whereas Spd and Spm were found to be higher towards mature stages of grain indicating the use of Put in grain filling process. Highly significant correlation was observed between PA metabolism, yield and nitrogen use efficiency at sub-optimal N dose as compared to supra-optimal dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RDN:

recommended doses of nitrogen

DPA:

days post anthesis

NUE:

nitrogen use efficiency

N:

nitrogen

Pas:

polyamines

Put:

putrescine

Spd:

spermidine

Spm:

spermine

ODC:

ornithine decarboxylase

ADC:

arginine decarboxylase

DAO:

diamine oxidase

PAO:

polyamine oxidase

References

  • Alcázar, R., Cuevas, J.C., Planas, J., Zarza, X., Bortolotti, C., Carrasco, P., Salinas, J., Tiburcio, A.F., Altabella, T. 2011. Integration of polyamines in the cold acclimation response. Plant Sci. 180:31–38.

    Article  Google Scholar 

  • Altman, A., Levin, N. 2006. Interaction of polyamines and nitrogen nutrition in plants. Physiol. Plant 89:653– 658.

    Article  Google Scholar 

  • Asthir, B., Duffus, C.M., Smith, R.C., Spoor, W. 2002. Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. J. Exp. Bot. 53:677–682.

    Article  CAS  Google Scholar 

  • Bányai, J., Maccaferri, M., Cané, M.A., Monostori, I., Spitkó, T., Kuti, C., Mészáros, K., Láng, L., Pál, M., Karsai, I. 2017. Phenotypical and physiological study of near-isogenic durum wheat lines under contrasting water regimes. South African J. Bot. 108:248–255.

    Article  Google Scholar 

  • Birecka, H., Bitonti, A.J., McCann, P.P. 1985. Assaying ornithine and arginine decarboxylase in some plant species. Plant Physiol. 79:509–514.

    Article  CAS  Google Scholar 

  • Dhillon-Grewal, R., Virk, D.S., Mangat, B.K., Basra, R.K., Basra, A.S. 1992. Polyamine levels in anthers of poly-cytoplasmic isonuclear male sterile lines of pearl millet. Bot. Bull. Academia Sinica 33:97–100.

    CAS  Google Scholar 

  • Diao, Q., Song, Y., Shi, D., Qi, H. 2017. Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front. Plant Sci. 8:203.

    Article  Google Scholar 

  • Feng, H.Y., Wang, Z.M., Kong, F.N., Zhang, M.J., Zhou, S.L. 2011. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J. Integr. Plant Biol. 53:388–398.

    Article  CAS  Google Scholar 

  • Garnicaa, M., Houdussea, F., Claude, Yvinc., Garcia-Mina, J.M. 2009. Nitrate supply induces changes in polyamine content and ethylene production in wheat plants grown with ammonium content and ethylene production in wheat plants grown with ammonium J. Plant Physiol. 166:363–374.

    Article  Google Scholar 

  • Geny, L., Broquedis, M. 2002. Developmental processes, polyamine composition and content of fruiting cuttings of Vitis vinifera L.: Responses to nitrogen deficiency. Vitis 41:123–127.

    CAS  Google Scholar 

  • Groppa, M.D., Benavides, P.M. 2008. Polyamines and abiotic stress: recent advance. Amino Acids 34:35–45.

    Article  CAS  Google Scholar 

  • Hanfrey, C., Sommer, S., Mayer, M.J., Burtin, D., Michael, A.J. 2001. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J. 27:551– 560.

    Article  CAS  Google Scholar 

  • Iannone, M.F., Rosales, E.P., Groppa, M.D., Benavides, M.P. 2013. H2O2 Involvement in polyamine-induced cell death in tobacco leaf discs. J. Plant Growth Regul. 4:745–757.

    Article  Google Scholar 

  • Kato, M.C., Hikosaka, K., Hirotsu, N., Makin, A., Hirose, T. 2003. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol. 44:318–325.

    Article  CAS  Google Scholar 

  • Lopez-Bellido, R.J., Lopez-Bellido, L. 2001. Efficiency of nitrogen in wheat under Mediterranean condition: effect of tillage, crop rotation and N fertilization. Field Crop Res. 71:31–64.

    Article  Google Scholar 

  • Lowe-Power, T.M., Hendrich, C.G., von Roepenack-Lahaye, E., Li, B., Wu, D., Mitra, R., Dalsing, B.L., Ricca, P., Naidoo, J., Cook, D., Jancewicz, A., Masson, P., Thomma, B., Lahaye, T., Michael, A. J., Allen, C. 2018. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 20:1330–1349.

    Article  CAS  Google Scholar 

  • Mattoo, A.K., Sobolev, A.P., Neelam, A., Goyal, R.K., Handa, A.K., Segre, A.L. 2006. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiol. 142:1759– 1770.

    Article  CAS  Google Scholar 

  • McKenzie, H.A., Wallace, H.S. 1954. The Kjeldahl determination of nitrogen. Aust. J. Chem. 17:55–59.

    Article  Google Scholar 

  • Mohapatra, S., Minocha, R., Long, S., Minocha, S. 2010. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129.

    Article  CAS  Google Scholar 

  • Moll, R.H., Kamprath, E.J., Jackson, W.A. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74:562–564.

    Article  Google Scholar 

  • Moschou, P.N., Paschalidis, K.A., Roubelakis-Angelakis, K.A. 2008. Plant polyamine catabolism: the state of the art. Plant Signal. Behav. 3:1061–1066.

    Google Scholar 

  • Moschou, P.N., Wu, J., Cona, A., Tavladoraki, P., Angelini, R., Roubelakis-Angelakis, K.A. 2012. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J. Exp. Bot. 63:5003–5015.

    Article  CAS  Google Scholar 

  • Muñiz, L., Minguet, E.G., Singh, S.K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C.L., Carbonell, J., Blázquez, M.A., Tuominen, H. 2008. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582.

    Article  Google Scholar 

  • Pfosser, M., Mengel, M., Konigshofer, H., Kandeler, R. 1992. Time course pf polyamine levels during starvation of Medicago Varia cells and its correlation with cell cycle data. J. Plant Physiol. 140:334–338.

    Article  CAS  Google Scholar 

  • Primikirios, N.I., Roubelakis-Angelakis, K.A. 2001. Indications for post-translational regulation of Vitis vinifera L. arginine decarboxylase. Plant Mol. Biol. 45:669–678.

    Article  CAS  Google Scholar 

  • Primikirios, N.I., Loulakakis, K.A., Lefort, F., Roubelakis-Angelakis, K.A. 2000. Nitrogen metabolism and recycling genes cloned from Vitis vinifera L. Acta Hortic. 528:231–239.

    CAS  Google Scholar 

  • Rea, G., De Pinto, M.C., Tavazza, R., Biondi, S., Gobbi, V., Ferrante, P., De Gara, L., Federico, R., Angelini, R., Tavladoraki, P. 2004. Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants. Plant Physiol. 134:1414–1426.

    Article  CAS  Google Scholar 

  • Schaller, K. 2007. Influence of nitrogen nutrition of grapevines on their polyamine metabolism. Acta Hortic. 64:7–12.

    Google Scholar 

  • Serapiglia, M.J., Minocha, R., Minocha, C.S. 2008. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens). Tree Physiol. 28:1793–1803.

    Article  CAS  Google Scholar 

  • Sial, M.A., Arain, M.A., Naqvi, S.K.M.H., Dahot, U., Nizamani, N.A. 2005. Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pak. J. Bot. 37:575–584.

    Google Scholar 

  • Singh, M.K., Thakur, R., Verma, U.N., Upasani, R.R., Pal, S.K. 2000. Effect of planting time and nitrogen on production potential of Basmati rice cultivars in Bhiar Plateau. Indian J. Agron. 45:300–303.

    Google Scholar 

  • Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Papadakis, A.K., Stephanou, E.G., Roubelakis-Angelakis, K.A. 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781.

    Article  CAS  Google Scholar 

  • Szalai, G. et al. 2017 Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol. Biochem. 112:239–250.

    Article  CAS  Google Scholar 

  • Takahashi, T., Kakehi, J. 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105:1–6.

    Article  CAS  Google Scholar 

  • Wu, J., Shang, Z., Jiang, X., Moschou, P.N., Sun, W., Roubelakis-Angelakis, K.A., Zhang, S. 2010. Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J. 63:1042–1053.

    Article  CAS  Google Scholar 

  • Xu, X., Shi, G., Ding, C., Xu, Y., Zhao, J., Yang, H., Pan, Q. 2011. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul. 63:251–258.

    Article  CAS  Google Scholar 

  • Yang, J.C., Cao, Y., Zhang, J.H., Liu, L., Zhang, J. 2008. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta 228:137–149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Asthir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Asthir, B. Modulation of Polyamines during Grain Development under Different Concentrations of Nitrogen in Wheat. CEREAL RESEARCH COMMUNICATIONS 47, 580–592 (2019). https://doi.org/10.1556/0806.47.2019.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.47.2019.28

Keywords

Navigation