Skip to main content
Log in

Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the generation rate of O2 ·−. It also significantly increased putrescine (Put) levels but lowered spermidine (Spd) and spermine (Spm) levels. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and polyamine oxidase (PAO) were all elevated with the increase of Cu concentration. However, application of exogenous Spd effectively decreased H2O2 content and the generation rate of O2 ·−, prevented Cu-induced lipid peroxidation and reduced Cu accumulation. Moreover, it declined level of endogenous Put and increased levels of Spd and Spm. Activities of ADC, ODC and PAO were all inhibited by exogenous Spd. The results indicated that application of exogenous Spd could enhance the tolerance of A. philoxeroides to Cu stress by reducing the reactive oxygen level and balancing polyamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atal N, Saradhi PP, Mohanty P (1991) Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentration of cadmium: analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol 32:943–951

    CAS  Google Scholar 

  • Aziz A, Larher F (1995) Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci 112:175–186. doi:10.1016/0168-9452(95)04264-4

    Article  CAS  Google Scholar 

  • Bezold TN, Brent Loy J, Minocha SC (2003) Changes in the cellular content of polyamines in different tissues of seed and fruit of a normal and a hull-less seed variety of pumpkin during development. Plant Sci 164:743–752. doi:10.1016/S0168-9452(03)00035-9

    Article  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595. doi:10.1016/S0031-9422(00)97805-1

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Buckingham GR (1996) Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61:232–243

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EEI (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5

    Article  CAS  Google Scholar 

  • Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40:439–444. doi:10.1016/S0981-9428(02)01392-X

    Article  CAS  Google Scholar 

  • Cuny D, Van Haluwyn CV, Shirali P, Zerimech F, Jérôme L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.–Identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69. doi:10.1023/B:WATE.0000015332.94219.ff

    Article  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266. doi:10.1016/j.envexpbot.2004.02.004

    Article  CAS  Google Scholar 

  • Ding CX, Shi GX, Xu XY, Yang HY, Xu Y (2010) Effect of exogenous spermidine on polyamine metabolism in water hyacinth leaves under mercury stress. Plant Growth Regul 60:61–67. doi:10.1007/s10725-009-9419-3

    Article  CAS  Google Scholar 

  • Duan JJ, Li J, Guo SR, Kang YY (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. doi:10.1016/j.jplph.2007.11.006

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Górecka K, Cvikrová M, Kowalska U, Eder J, Szafrańska K, Górecki R, Janas KM (2007) The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot. Plant Physiol Biochem 45:54–61. doi:10.1016/j.plaphy.2006.12.007

    Article  PubMed  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488. doi:10.1016/S0168-9452(01)00432-0

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299. doi:10.1016/S0168-9452(02)00412-0

    Article  CAS  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. doi:10.1007/s004250050524

    Article  CAS  Google Scholar 

  • Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821. doi:10.1016/j.plaphy.2007.08.001

    Article  PubMed  Google Scholar 

  • Kuthanová A, Gemperlová L, Zelenková S, Eder J, Macháčková I, Opatrný Z, Cvikrová M (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42:149–156. doi:10.1016/j.plaphy.2003.11.003

    Article  PubMed  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  PubMed  CAS  Google Scholar 

  • Lin ZF, Li SS, Lin GZ (1988) Senescing leaves and chloroplasts in relation to lipid peroxidation. Acta Phytophysiol Sin 14:16–22

    CAS  Google Scholar 

  • Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL (2004) Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci 166:1261–1267. doi:10.1016/j.plantsci.2003.12.039

    Article  CAS  Google Scholar 

  • Lütz C, Navakoudis E, Seidlitz HK, Kotzabasis K (2005) Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochim Biophys Acta 1710:24–33

    Article  PubMed  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148. doi:10.1023/A:1013343106574

    Article  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2006) Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? J Plant Physiol 163:506–516

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HD, Brownlee C, Coelho SM, Brown MT (2003) Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol 160:157–165. doi:10.1046/j.1469-8137.2003.00864.x

    Article  CAS  Google Scholar 

  • Ormrod DP, Beckerson DW (1986) Polyamines as antiozonants for tomato. HortScience 21:1070–1071

    CAS  Google Scholar 

  • Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF, Altabella T (2002) Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiol Plant 114:281–287. doi:10.1034/j.1399-3054.2002.1140214.x

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591. doi:10.1016/j.plantsci.2004.08.014

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726. doi:10.1093/jxb/erj073

    Article  PubMed  CAS  Google Scholar 

  • Shen HJ, Xie YF, Li RT (1994) Effects of acid stress on polyamine levels, ion efflux, protective enzymes and macromolecular synthesis in cereal leaves. Plant Growth Regul 14:1–5. doi:10.1007/BF00024134

    Article  CAS  Google Scholar 

  • Shen ZG, Zhang FQ, Zhang FS (1998) Toxicity of copper and zinc in seedlings of Mung bean and inducing accumulation of polyamine. J Plant Nutr 21:1153–1162. doi:10.1080/01904169809365474

    Article  CAS  Google Scholar 

  • Slocum RD (1991) Polyamine biosynthesis in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 23–40

    Google Scholar 

  • Slocum RD, Weinstein LH (1990) Stress-induced putrescine accumulation as a mechanism of ammonium detoxification in cereal leaves. In: Flores EH, Arteca RN, Shannon JC (eds) Polyamine and ethylene: biochemistry, physiology and interaction. American Society of Plant Physiologists, Rockville, MD, pp 157–165

    Google Scholar 

  • Smith TA (1985) The di- and poly-amine oxidases of higher plants. Biochem Soc Trans 13:319–322

    PubMed  CAS  Google Scholar 

  • Swamy PM, Usha R, Kiranmayee P, Ramamurthy N (2004) Changes in polyamine contents and arginine decarboxylase activity associated with elongation growth of hypocotyls in Rhizophora apiculata Bl. Can J Bot 82:1656–1661. doi:10.1139/B04-126

    Article  CAS  Google Scholar 

  • Takao K, Rickhag M, Hegardt C, Oredsson S, Persson L (2006) Induction of apoptotic cell death by putrescine. Int J Biochem Cell Biol 38:621–628. doi:10.1016/j.biocel.2005.10.020

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122:386–395. doi:10.1111/j.1399-3054.2004.00406.x

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14. doi:10.1042/BJ20031327

    Article  PubMed  CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Wang BR, Li WG, Wang JB (2005) Genetic diversity of Alternanthera philoxeroides in China. Aquat Bot 81:277–283. doi:10.1016/j.aquabot.2005.01.004

    Article  Google Scholar 

  • Zhao HZ, Yang HQ (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116:442–447. doi:10.1016/j.scienta.2008.02.017

    Article  CAS  Google Scholar 

  • Zhao FG, Sun C, Liu YL, Zhang WH (2003) Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin 45:295–300

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30670121 and No. 30870139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Shi, G., Ding, C. et al. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul 63, 251–258 (2011). https://doi.org/10.1007/s10725-010-9522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9522-5

Keywords

Navigation