Advertisement

Cereal Research Communications

, Volume 37, Issue 1, pp 13–21 | Cite as

Development and Application of EST-STS Markers Specific to Chromosome 1RS of Secale cereale

  • C. M. Wang
  • L. H. Li
  • X. T. Zhang
  • Q. Gao
  • R. F. Wang
  • D. G. AnEmail author
Genetics

Abstract

Molecular markers are important tools that have been used to identify the short arm of rye chromosome 1R (1RS) which contains many useful genes introgressed into wheat background. Wheat expressed sequence tag (EST) sequences are valuable for developing molecular markers since ESTs are derived from gene transcripts and more likely to be conserved between wheat and its relative species. In the present study, 35 sequence-tagged site (STS) primers were designed based on EST sequences distributed on homology group 1 chromosomes of Triticum aestivum and used to screen specific markers for chromosome 1RS of Secale cereale. Two primer pairs different from the early studies, STS WE3, which amplified a 1680-bp and a 1750-bp fragment, and STS WE126, which produced a 850-bp fragment from rye genome, were proved to be specific to chromosome 1RS since the corresponding fragments were only amplified from 1R chromosome addition line and wheat-rye lines with chromosome 1RS, but not from wheat-rye 2R-7R chromosome addition lines and the other lines lacking chromosome 1RS. Eleven wheat-rye lines derived from ‘Xiaoyan 6’ and ‘German White’ were used to test the presence of specific markers for 1RS. The specific fragments of 1RS were amplified in 4 wheat-rye lines, but not in the other lines. The testing results using EST-STS markers of 1RS were consistent with those obtained from fluorescence in situ hybridization (FISH), suggesting that these markers specific to 1RS could be used in marker-assisted selection (MAS) for incorporating 1RS into wheat cultivars in breeding.

Keywords

wheat expressed sequence tag (EST) sequence-tagged site (STS) Secale cereale chromosome specific marker marker-assisted selection (MAS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, D.G., Li, L.H., Li, J.M., Li, H.J., Zhu, Y.G. 2006. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J. Integrative Plant Biology 48 (7):838–847.CrossRefGoogle Scholar
  2. Katto, M.C., Endo, T.R., Nasuda, S. 2004. A PCR-based marker for targeting for small rye segments in wheat background. Genes Genet. Syst. 79:245–250.CrossRefGoogle Scholar
  3. Ko, J.M., Do, G.S., Suh, D.Y., Seo, B.B., Shin, D.C., Moon, H.P. 2002. Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45:157–164.CrossRefGoogle Scholar
  4. Koebner, R.M.D. 1995. Generation of PCR-based markers for the detection of rye chromatin in wheat background. Theor. Appl. Genet. 90:740–745.CrossRefGoogle Scholar
  5. LaRota, M., Sorrells, M.E. 2004. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between wheat and rice. Funct. Integr. Genomics 4:34–46.CrossRefGoogle Scholar
  6. Li, H.J., Conner, R.L., Liu, Z.Y., Zhou, Y.L., Duan, X.Y., Shen, T.M., Chen, Q., Graf, R.J., Li, Y.W., Chen, Y., Jia, X. 2007. Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis. 91 (4):368–374.CrossRefGoogle Scholar
  7. Liu, C., Li, G.R., Yang, Z.J., Feng, J., Zhou, J.P., Ren, Z.L. 2006. Specific DNA band isolation and SCAR marker construction of rye genome. Acta Bot. Boreal-Occident. Sin. 26 (12):2434–2438.Google Scholar
  8. Mohammadi, R., Farshadfar, E., Aghaee-Sarbarzeh, M., Sutka, J. 2003. Locating QTLs controlling drought tolerance criteria in rye using disomic addition lines. Cereal Res. Comm. 31:257–264.Google Scholar
  9. Mohler, V., Hsam, S.L.K., Zeller, F.J., Wenzel, G. 2001. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breeding 120:448–450.CrossRefGoogle Scholar
  10. Nagy, E.D., Christoph, E., Molnár-Láng, M., Lelley, T. 2003a. Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat rye translocation. Euphytica 132:243–250.CrossRefGoogle Scholar
  11. Nagy, E.D., Lelley, T. 2003b. Genetic and physical mapping of sequence specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm in a wheat background. Theor. Appl. Genet. 107:1271–1277.CrossRefGoogle Scholar
  12. Naranjo, T., Toc, A.A., Goicoechea, P.G., Giraldez, R. 1987. Arm homology of wheat and rye chromosomes. Genome 29:873–882.CrossRefGoogle Scholar
  13. Rabinovich, S.V. 1998. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340.CrossRefGoogle Scholar
  14. Saal, B., Wricke, G. 1999. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972.CrossRefGoogle Scholar
  15. Schneider, A., Molnár-Láng, M. 2008. Polymorphism analysis using 1RS-specific molecular markers in rye cultivars (Secale cereale L.) of various origin. Cereal Res. Comm. 36:11–19.CrossRefGoogle Scholar
  16. Sharp, P.J., Kreis, M., Shewry, P. 1988. Location of β-amylase sequences in wheat and its relatives. Theor. Appl. Genet. 75:289–290.CrossRefGoogle Scholar
  17. Tixier, M.H., Sourdille, P.M.S. 1997. Detection of wheat microsatellites using no-radioactive silver nitrate staining method. Genet. Breed. 51:175–177.Google Scholar
  18. Van Campenhout, S., Aert, R., Volckaert, G. 1998. Orthologous DNA sequence variation among 5S ribosomal RNA gene spacer sequences on homoeologous chromosomes 1B, 1D, and 1R of wheat and rye. Genome 41:244–255.CrossRefGoogle Scholar
  19. Varshney, R.K., Sigmand, R., Borner, A., Korzun, V., Stein, N., Sorrells, M.E., Langridge, P., Graner, A. 2004. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci. 168:195–202.CrossRefGoogle Scholar
  20. Wang, C.M., Feng, Y.G., Zhuang, L.F., Cao, A.Z., Chen, P.D. 2007. Screening of chromosome-specific markers for chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji. Acta Agron. Sinica 33 (11):1741–1747.Google Scholar
  21. Wang, Z.G., An, D.G., Li, J.M., Molnár-Láng, M., Ji, J., Zhong, G.C., Mu, S.M. 2004. Fluorescent in situ hybridization analysis of wheat-rye germplasm under the background of Xiaoyan 6. Acta Botanica Sinica 4:436–442.Google Scholar
  22. William, M.D.H.M., Mujeeb-Kazi, A. 1993. Rapid detection of 1B, 1BL/1RS heterozygotes in the development of homozygous 1BL/1RS translocation stocks of Triticum turgidum (2n s = 4x = 28). Genome 36:1088–1091.CrossRefGoogle Scholar
  23. Zeller, F.J., Fuchs, E. 1983. Cytologie und krankheitsresistenz einer 1A/1R und mehrerer 1B/1R Weizen-Roggen-Translokationssorten. Plant Breeding 90:285–296.Google Scholar
  24. Zhang, L.Y., Bernard, M., Leroy, P., Feuillet, C., Sourdille, P. 2005. High transferability of bread wheat EST-derived SSRs to other cereals. Theor. Appl. Genet. 111:677–687.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • C. M. Wang
    • 1
  • L. H. Li
    • 2
  • X. T. Zhang
    • 1
  • Q. Gao
    • 1
  • R. F. Wang
    • 1
  • D. G. An
    • 1
    Email author
  1. 1.Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
  2. 2.Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations