Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 95–108 | Cite as

Seasonal and Diurnal Variability in SAP Flow Intensity of Mature Sessile Oak (Quercus petraea (Matt.) Liebl.) Trees in Relation to Microclimatic Conditions

  • P. Kanalas
  • A. Fenyvesi
  • J. Kis
  • Erzsébet Szőllősi
  • V. Oláh
  • I. Ander
  • Ilona MészárosEmail author


In this study sap flow dynamics of mature sessile oak trees (Quercus petraea) in a marginal sessile oakturkey oak forest was investigated in 2009. That year spring was dry without significant rain in April and May and the driest month was August. Due to the extreme weather conditions the volumetric soil water content (SWC) of upper 30 cm was low on experimental days in May (0.13–0.14 cm3 cm−3) but it reached the lowest value in August (0.08 cm3 cm−3). Sap flow was measured in a dominant and a co-dominant tree by heat dissipation method from 26 March till 30 October. In the present paper several three-day long periods of the continuous seasonal recordings were chosen to represent the effects of typical weather conditions and different stages of canopy development on sap flow dynamics. The daily maximum sap flow density values of dominant and co-dominant trees were similar (0.30–0.32 cm3 cm−2 min−1) in moist period (July). Rains and transient increase of SWC after proceeding drought resulted in change of diurnal course of sap flow in experimental days of July. In this period dominant trees also showed considerable sap flow (0.19 cm3 cm−2 min−1) during night hours and short sap flow peaks in early morning (6:00 to 8:00 a.m.) indicating the refilling of desiccated tissues. After the progressive drought in August the daily maximum sap flow density decreased to 0.07 cm3 cm−2 min−1 in dominant tree and to 0.12 cm3 cm−2 min−1 in the co-dominant. Both trees exhibited gradual stomatal closure from morning hours.


Drought stress marginal forest sap flow sessile oak stomatal control 



volumetric soil moisture content cm3 cm−3


Photosynthetic Photon flux Density in μmol quanta m−2 s−1


temperature °C


sap flow density cm3 cm−2 min−1


atmospheric vapour pressure deficit kPa


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aranda, I., Gil, L., Pardos, A. J. (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14, 344–352.CrossRefGoogle Scholar
  2. 2.
    Bréda, N., Huc, R., Granier, A., Dreyer, E. (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644.CrossRefGoogle Scholar
  3. 3.
    Čermák, J., Úlehla, J., Kučera, J., Penka, M. (1982) Sap flow rate and transpiration dynamics in the full-grown oak (Quercus robur L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biol. Plant. 2, 446–460.CrossRefGoogle Scholar
  4. 4.
    Čermak, J. (1995) Methods for studies of water transport in trees, especially the stem heat balance and scaling. In: Proceedings of the 32nd Course in Applied Ecology. San Vito di Cadore. University of Padova, Italy, pp. 57–82.Google Scholar
  5. 5.
    Čermak, J., Kučera, J., Nadezhdina, N. (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18, 529–546.CrossRefGoogle Scholar
  6. 6.
    Čermák, J., Kučera, J., Bauerle, L. W., Phillips, N., Hinckley, M. T. (2007) Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol. 27, 181–198.CrossRefGoogle Scholar
  7. 7.
    Domec, J. C., Meinzer, F. C., Lachenbruch, B., Housset, J. (2007) Dynamic variation in sapwood specific conductivity in six woody species. Tree Physiol. 27, 1389–1400.CrossRefGoogle Scholar
  8. 8.
    Dünisch, O., Morais, R. R. (2002) Regulation of xylem sap flow in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. Trees 16, 404–416.Google Scholar
  9. 9.
    Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J., Leitgeb, E. (2009) Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecol. Manag. 258, 590–599.CrossRefGoogle Scholar
  10. 10.
    Granier, A. (1985) Une nouvelle methode pour la mesure de flux de seve brute dans le tronc des arbres. Ann. For. Sci. 42, 193–200.CrossRefGoogle Scholar
  11. 11.
    Granier, A. (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320.CrossRefGoogle Scholar
  12. 12.
    Granier, A., Bréda, N., Dreyer, E., Aussenac, G. (1996) Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Ann. For. Sci. 53, 537–546.CrossRefGoogle Scholar
  13. 13.
    Jakucs, P., Mészáros, I., Papp, B. L., Tóth, J. A. (1986) Acidification of soil and decay of sessile oak in the “Sikfőkút Project” area (N-Hungary). Acta Bot. Hung. 32, 303–322.Google Scholar
  14. 14.
    Jump, A. S., Mátyás, C., Penuelas, J. (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution 24, 694–770.CrossRefGoogle Scholar
  15. 15.
    Köstner, B., Granier, A., Cermak, J. (1998) Sapflow measurements in forest stands: methods and uncertainties. Ann. For. Sci. 55, 13–27.CrossRefGoogle Scholar
  16. 16.
    Küppers, M., Heiland, I., Schneider, H., Neugebauer, J. P. (1999) Light-flecks cause non-uniform stomatal opening–studies with special emphasis on Fagus sylvatica L. Trees-Struct. Funct. 14, 130–144.Google Scholar
  17. 17.
    Mátyás, C. (2010) Forecasts needed for retreating forests. Nature 464, 1271.CrossRefGoogle Scholar
  18. 18.
    McDowell, N., Pockman, T. W., Craig, D., Allen, D. C., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, G. D., Yepez, A. E. (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739.CrossRefGoogle Scholar
  19. 19.
    Mészáros, I., Veres, S., Kanalas, P., Oláh, V., Szőllősi, E., Sárvári, É., Lévai, L., Lakatos, Gy. (2007) Leaf growth and photosynthetic performance of two co-existing oak species in contrasting growing seasons. Acta Silv. Lign. Hung. 3, 7–20.Google Scholar
  20. 20.
    Nadezhdina, N. (1999) Sapflow as an indicator of plant water stress. Tree Physiol. 19, 885–891.CrossRefGoogle Scholar
  21. 21.
    Schulze, E. D., Čermak, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W., Kucera, J. (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees–a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66, 475–483.CrossRefGoogle Scholar
  22. 22.
    Thomas, M. F., Blank, R., Hartmann, G. (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For. Path. 32, 277–307.CrossRefGoogle Scholar
  23. 23.
    Verbeek, H., Steppe, K., Nadezdhina, N., Op De Beek, M., Deckmyn, G., Meirsonne, L., Lemeur, R., Čermak, J., Ceulemans, R., Janssens, I. A. (2007) Model analysis of the effects of atmospheric drivers in storage water use in Scots pine. Biogeosciences 4, 657–671.CrossRefGoogle Scholar
  24. 24.
    Zhao, W., Liu, B. (2010) The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agr. Forest Meteorol. 150, 1297–1306.CrossRefGoogle Scholar
  25. 25.
    Zweifel, R., Item, H., Haster, R. (2000) Stem radius changes and their relation to stored water in stems of young Norwey spruce trees. Trees 15, 50–57.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Kanalas
    • 1
  • A. Fenyvesi
    • 2
  • J. Kis
    • 1
  • Erzsébet Szőllősi
    • 1
  • V. Oláh
    • 1
  • I. Ander
    • 2
  • Ilona Mészáros
    • 1
    Email author
  1. 1.Department of Botany, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Section of Cyclotron ApplicationsNuclear Research InstituteDebrecenHungary

Personalised recommendations