Skip to main content
Log in

On the Fractional Diffusion-Advection-Reaction Equation in ℝ

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We present an analysis of existence, uniqueness, and smoothness of the solution to a class of fractional ordinary differential equations posed on the whole real line that models a steady state behavior of a certain anomalous diffusion, advection, and reaction. The anomalous diffusion is modeled by the fractional Riemann-Liouville differential operators. The strong solution of the equation is sought in a Sobolev space defined by means of Fourier Transform. The key component of the analysis hinges on a characterization of this Sobolev space with the Riemann-Liouville derivatives that are understood in a weak sense. The existence, uniqueness, and smoothness of the solution is demonstrated with the assistance of several tools from functional and harmonic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, J. F. Fournier, Sobolev Spaces. Academic Press (2003).

    MATH  Google Scholar 

  2. B. Baeumer, M. Kovács, M. Meerschaert, H. Sankaranarayanan, Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 336 (2018), 408–424

    Article  MathSciNet  MATH  Google Scholar 

  3. D. A. Benson, M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective. Adv. Water Resour. 51 (2013), 479–497

    Article  Google Scholar 

  4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, 2011.

    Book  MATH  Google Scholar 

  5. O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq, M. Meerschaert, Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, No 2 (2015), 342–360; DOI: 10.1515/fca-2015-0023; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521–573

    Article  MathSciNet  MATH  Google Scholar 

  7. V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22 (2006), 558–576

    Article  MathSciNet  MATH  Google Scholar 

  8. L. C. Evans, Partial Differential Equations. Graduate Studies in Mathematics # 19, Amer. Math. Soc., 2010.

    Google Scholar 

  9. C. Gasquet, P. Witomski, Fourier Analysis and Applications., Texts in Applied Mathematics # 30, Springer-Verlag, (1999). Filtering, Numerical Computation, Wavelets, Translated by R. Ryan.

    MATH  Google Scholar 

  10. A. Goulart, M. Lazo, J. Suarez, D. Moreira, Fractional derivative models for atmospheric dispersion of pollutants. Physica A: Statistical Mechanics and its Applications 477 (2017), 9–19

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Izsák, B. J. Szekeres, Models of space-fractional diffusion: A critical review. Applied Mathematics Letters 71 (2017), 38–43

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Japundžić, D. Rajter-Ćirić, Reaction-advection-diffusion equations with space fractional derivatives and variable coefficients on infinite domain. Fract. Calc. Appl. Anal. 18, No 4 (2015), 911–950; DOI: 10.1515/fca-2015-0055; https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Jin, R. D. Lazarov, J. E. Pasciak, W. Rundell, Variational formulation of problems involving fractional order differential operators. Math. Comput. 84 (2015), 2665–2700

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Li, On Fractional Differential Equations and Related Questions. Ph.D. Dissertation, University of Wyoming, 2019.

    Google Scholar 

  15. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies # 204, Elsevier Science B.V., Amsterdam, 2006.

    MATH  Google Scholar 

  16. F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. Springer-Vienna (1997), 291–348.

    Book  Google Scholar 

  17. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Rudin, Real and Complex Analysis. McGraw-Hill Book Co. (1987).

    MATH  Google Scholar 

  19. W. Rudin, Functional Analysis. International Ser. in Pure and Applied Mathematics, McGraw-Hill, Inc. 1991.

    MATH  Google Scholar 

  20. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers (1993).

    MATH  Google Scholar 

  21. E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A: Statistical Mechanics and its Applications 284 (2000), 376–384

    Article  MathSciNet  Google Scholar 

  22. R. Stern, F. Effenberger, H. Fichtner, T. Schäfer, The space-fractional diffusion-advection equation: Analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17, No 1 (2014), 171–190; DOI: 10.2478/s13540-014-0161-9; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana # 3, Springer, 2007.

    Google Scholar 

  24. H. Wang, D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51 (2013), 1088–1107

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Wang, D. Yang, S. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52 (2014), 1292–1310

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Wang, D. Yang, S. Zhu, Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J. Sci. Comput. 70 (2017), 429–449

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Werner, Funktionalanalysis. Springer-Verlag (2011).

    Book  MATH  Google Scholar 

  28. S. W. Wheatcraft, M. Meerschaert, Fractional conservation of mass. Adv. Water Resour. 31 (2008), 1377–1381

    Article  Google Scholar 

  29. Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations. World Scientific Publishing Co. Pte. Ltd. (2017).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginting, V., Li, Y. On the Fractional Diffusion-Advection-Reaction Equation in ℝ. FCAA 22, 1039–1062 (2019). https://doi.org/10.1515/fca-2019-0055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0055

MSC 2010

Key Words and Phrases

Navigation