Skip to main content
Log in

On generalized boundary value problems for a class of fractional differential inclusions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abu Hamed, A.A. Nepomnyashchy, Domain coarsening in a subdiffusive Allen-Cahn equation. Phys. D. 308 (2015), 52–58; 10.1016/j.physd.2015.06.007.

    Article  MathSciNet  Google Scholar 

  2. B. Amhad, J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009 (2009), 9 pp.; 10.1155/2009/494720.

  3. E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, No 1 (2007), 542–553; 10.1016/j.jmaa.2006.01.087.

    Article  MathSciNet  Google Scholar 

  4. M. Alipour, L. Beghin, D. Rostamy, Generalized fractional nonlinear birth processes. Methodol. Comput. Appl. Probab. 17, No 3 (2015), 525–540; 10.1007/s11009-013-9369-0.

    Article  MathSciNet  Google Scholar 

  5. C.T. Anh, T.D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces. Fixed Point Theory. 15, No 2 (2014), 373–392.

    MathSciNet  MATH  Google Scholar 

  6. I. Benedetti, L. Malaguti, V. Taddei, Nonlocal semilinear evolution equations without strong compactness: theory and applications. Bound. Value Probl. 60 (2013), 18 pp.; 10.1186/1687-2770-2013-60.

  7. I. Benedetti, V. Obukovskii, V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space. J. Funct. Sp. 2015 (2015), 1–10; 10.1155/2015/651359.

    Article  MathSciNet  Google Scholar 

  8. I. Benedetti, V. Taddei, M. Väth, Evolution problems with nonlinear nonlocal boundary conditions. J. Dyn. Diff. Equat. 25, No 2 (2013), 477–503; 10.1007/s10884-013-9303-8.

    Article  MathSciNet  Google Scholar 

  9. S. Bochner, A.E. Taylor, Linear functionals on certain spaces of abstractly-valued functions. Ann. Math. 39, No 4 (1938), 913–944; 10.2307/1968472.

    Article  MathSciNet  Google Scholar 

  10. L. Byszewski, Theorems about the existence and uniquencess of a solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, No 2 (1991), 494–505; 10.1016/0022-247X(91)90164-U.

    Article  MathSciNet  Google Scholar 

  11. A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183–194; 10.2478/s13540-012-0013-4.https://www.degruyter.com/view/j/fca.2012.15.issue-2/s13540-012-0013-4/s13540-012-0013-4.xml

    Article  MathSciNet  Google Scholar 

  12. A. Cernea, A note on mild solutions for nonconvex fractional semilinear differential inclusion. Ann. Acad. Rom. Sci. Ser. Math. Appl. 5, No 1-2 (2013), 35–45.

    MathSciNet  MATH  Google Scholar 

  13. K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179 (1993), 630–637.

    Article  MathSciNet  Google Scholar 

  14. Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4C T-cells. Mathematical and Computer Modelling. 50, No 3-4 (2009), 386–392; 10.1016/j.mcm.2009.04.019.

    Article  MathSciNet  Google Scholar 

  15. M.M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solit. Fract. 14, No 3 (2002), 433–440; 10.1016/S0960-0779(01)00208-9.

    Article  MathSciNet  Google Scholar 

  16. K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38, No 2 (1952), 121–126.

    Article  MathSciNet  Google Scholar 

  17. J. García-Falset, S. Reich, Integral solutions to a class of nonlocal evolution equations. Comm. Contemp. Math. 12, No 6 (2010), 1032–1054; 10.1142/S021919971000410X.

    Article  MathSciNet  Google Scholar 

  18. L.I. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170–174; 10.2307/2032478.

    MathSciNet  MATH  Google Scholar 

  19. A. Hanyga, Multidimensional solutions of space-fractional diffusion equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, No 2016 (2001), 2993–3005; 10.1098/rspa.2001.0849.

    Article  MathSciNet  Google Scholar 

  20. M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. in Nonlinear Analysis and Applications # 7, Walter de Gruyter, Berlin - New York (2001).

    Book  Google Scholar 

  21. L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford (1982).

    MATH  Google Scholar 

  22. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics studies # 204, Elsevier (2006).

    MATH  Google Scholar 

  23. K. Li, J. Peng, J. Gao, Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness. Fract. Calc. Appl. Anal. 15, No 4 (2012), 591–610; 10.2478/s13540-012-0041-0.https://www.degruyter.com/view/j/fca.2012.15.issue-4/s13540-012-0041-0/s13540-012-0041-0.xml

    Article  MathSciNet  Google Scholar 

  24. X. Liu, Z. Liu, On the bang-bang principle for a class of fractional semilinear evolution inclusions. Proc. Roy. Soc. Ed. A. 144, No 2 (2014), 333–349; https://doi.org/10.1017/S030821051200128X

    Article  MathSciNet  Google Scholar 

  25. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publ., John Wiley and Sons, Inc., New York (1993).

    MATH  Google Scholar 

  26. A. Paicu, I.I. Vrabie, A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonl. Anal. 72, No 11 (2010), 4091–4100; 10.1016/j.na.2010.01.041.

    Article  MathSciNet  Google Scholar 

  27. B.J. Pettis, On the integration in vector spaces. Trans. Amer. Math. Soc. 44, No 2 (1938), 277–304.

    Article  MathSciNet  Google Scholar 

  28. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering # 198, Academic Press, Inc., San Diego (1999).

    MATH  Google Scholar 

  29. I.I. Vrabie, C0-Semigroups and Applications. North-Holland Math. Studies # 191, North-Holland Publishing Co., Amsterdam (2003).

    Google Scholar 

  30. J. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, No 4 (2016), 806–831; 10.1515/fca-2016-0044.https://www.degruyter.com/view/j/fca.2016.19.issue-4/fca-2016-0044/fca-2016-0044.xml

    Article  MathSciNet  Google Scholar 

  31. J. Wang, A.G. Ibrahim, M. Feckan, Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comp. 257 (2015), 103–118; 10.1016/j.amc.2014.04.093.

    Article  MathSciNet  Google Scholar 

  32. J.Y. Yang, J.F. Huang, D.M. Liang, Y.F. Tang, Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, No 14 (2014), 3652–3661; 10.1016/j.apm.2013.11.069.

    Article  MathSciNet  Google Scholar 

  33. Z. Zhang, B. Liu, Existence of mild solutions for fractional evolution equations. Fixed Point Theory. 15, No 1 (2014), 325–334.

    MathSciNet  MATH  Google Scholar 

  34. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comp. Math. Appl. 59, No 3 (2010), 1063–1077; 10.1016/j.camwa.2009.06.026.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Benedetti.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, I., Obukhovskii, V. & Taddei, V. On generalized boundary value problems for a class of fractional differential inclusions. FCAA 20, 1424–1446 (2017). https://doi.org/10.1515/fca-2017-0075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0075

MSC 2010

Key Words and Phrases

Navigation