Skip to main content
Log in

Fractional-Compact Numerical Algorithms for Riesz Spatial Fractional Reaction-Dispersion Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

It is well known that using high-order numerical algorithms to solve fractional differential equations leads to almost the same computational cost with low-order ones but the accuracy (or convergence order) is greatly improved due to the nonlocal properties of fractional operators. Therefore, developing some high-order numerical approximation formulas for fractional derivatives plays a more important role in numerically solving fractional differential equations. This paper focuses on constructing (generalized) high-order fractional-compact numerical approximation formulas for Riesz derivatives. Then we apply the developed formulas to the one- and two-dimension Riesz spatial fractional reaction-dispersion equations. The stability and convergence of the derived numerical algorithms are strictly studied by using the energy analysis method. Finally, numerical simulations are given to demonstrate the efficiency and convergence orders of the presented numerical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424–438.

    Article  MathSciNet  Google Scholar 

  2. B. Baeumer, M. Kovács, and H. Sankaranarayanan, Higher order Grünwald approximations of fractional derivatives and fractional powers of operators. Trans. Amer. Math. Soc. 367 (2015), 813–834.

    Article  MathSciNet  Google Scholar 

  3. D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore, (2012).

    Book  Google Scholar 

  4. J.X. Cao, C.P. Li, and Y.Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, No 3 (2015), 735–761; DOI: 10.1515/fca-2015-0045; http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  5. C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231 (2012), 1743–1750.

    Article  MathSciNet  Google Scholar 

  6. Y. Dimitrov, A second order approximation for the Caputo fractional derivative. Journal of Fractional Calculus and Applications 7, No 2 (2016), 175–195.

    MathSciNet  Google Scholar 

  7. Y. Dimitrov, Higher-order numerical solutions of the fractional relaxation oscillation equation using fractional integration. arXiv:1603.08733 (2016).

    Google Scholar 

  8. H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014 (2014), Article ID 653797, 1–17.

    MathSciNet  MATH  Google Scholar 

  9. H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293 (2015), 218–237.

    Article  MathSciNet  Google Scholar 

  10. H.F. Ding, C.P. Li, High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, No 1 (2016), 19–55; DOI: 10.1515/fca-2016-0003; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  11. H.F. Ding, C.P. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, No 2 (2017), 759–784.

    Article  MathSciNet  Google Scholar 

  12. P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A. 142, No 6 (2012), 1237–1262.

    Article  MathSciNet  Google Scholar 

  13. G. Gao, Z. Sun, and H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014), 33–50.

    Article  MathSciNet  Google Scholar 

  14. R. Garrappa, M. Popolizio, On the use of matrix functions for fractional partial differential equations. Math. Comput. Simulat. 81, No 5 (2011), 1045–1056.

    Article  MathSciNet  Google Scholar 

  15. R. Gorenflo, F. Mainardi, Approximation of lévy-feller diffusion by random walk. J. Anal. Appl. 18, No 2 (1999), 231–246.

    MATH  Google Scholar 

  16. M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calc. Appl. Anal. 8, No 3 (2005), 323–341; http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  17. C.C. Ji, Z.Z. Sun, The high-order compact numerical algorithms for the two- dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269 (2015), 775–791.

    MathSciNet  MATH  Google Scholar 

  18. B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, No 1 (2016), 197–221.

    MathSciNet  MATH  Google Scholar 

  19. A.J. Laub, Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics, Philadelphia, PA (2005).

    Book  Google Scholar 

  20. C.P. Li, F.H. Zeng, Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015).

    Book  Google Scholar 

  21. S. Longhi, Fractional Schrödinger equation in optics. Opt. Lett. 40, No 6 (2015), 1117–1120.

    Article  Google Scholar 

  22. C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17, No 3 (1986), 704–719.

    Article  MathSciNet  Google Scholar 

  23. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004), 65–77.

    Article  MathSciNet  Google Scholar 

  24. M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Sci. 2006 (2006), Article ID 48391, 1–12.

    Article  Google Scholar 

  25. G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 18, No 2 (2016), 408–440; DOI: 10.1515/fca-2016-0022; http://www.degruyter.com/view/j/fca.2016.19.issue-2/fca-2016-0022/fca-2016-0022.xml.

    Article  MathSciNet  Google Scholar 

  26. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer, New York (2007).

    Book  Google Scholar 

  27. S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, London (1993).

    MATH  Google Scholar 

  28. S. Secchi, M. Squassina, Soliton dynamics for fractional Schrödinger equations. Appl. Anal. 93, No 8 (2014), 1702–1729.

    Article  MathSciNet  Google Scholar 

  29. S. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, A novel numerical approximation for the Riesz space fractional advection-dispersion equation. IMA J. Appl. Math. 79, No 3 (2014), 431–444.

    Article  MathSciNet  Google Scholar 

  30. B.A. Stickler, Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. Phys. Rev. E. 88, No 1 (2013), 012120.

    Google Scholar 

  31. C. Tadjeran, M.M. Meerschaert, and H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213 (2006), 205–213.

    Article  MathSciNet  Google Scholar 

  32. W. Tian, H. Zhou, and W. Deng, A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, No 294 (2015), 1703–1727.

    Article  MathSciNet  Google Scholar 

  33. P. Wang, C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293 (2015), 238–251.

    Article  MathSciNet  Google Scholar 

  34. Y. Yan, K. Pal, and N.J. Ford, Higher order numerical methods for solving fractional differential equations. BIT 54, No 2 (2014), 555–584.

    Article  MathSciNet  Google Scholar 

  35. H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298 (2015), 652–660.

    Article  MathSciNet  Google Scholar 

  36. Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34 (2010), 200–218.

    Article  MathSciNet  Google Scholar 

  37. Y.X. Zhang, H.F. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation. J. Comput. Appl. Math. 260 (2014), 266–280.

    Article  MathSciNet  Google Scholar 

  38. H. Zhou, W. Tian, and W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, No 1 (2013), 45–66.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfei Ding.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, C. Fractional-Compact Numerical Algorithms for Riesz Spatial Fractional Reaction-Dispersion Equations. FCAA 20, 722–764 (2017). https://doi.org/10.1515/fca-2017-0038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0038

MSC 2010

Key Words and Phrases

Navigation