Skip to main content

A Numerical Approach for Variable Order Fractional Equations

  • Chapter
  • First Online:
Numerical Solutions of Realistic Nonlinear Phenomena

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 31))

  • 456 Accesses

Abstract

This work considers numerical solutions of variable fractional order, multi-term differential equations. A second order numerical approach has been used here to approximate fractional order derivative and this approach is similar to the fractional-variable order derivative approach for single-term case (see Cao and Qiu (Appl. Math. Lett. 61, 88–94, 2016)). To construct a multi-term, fractional-variable order differential equation, we first add y(t) term to the single-term equation and then test the convergency of the method. Secondly, we add a second order ordinary derivative term to the equation and this term is approximated by central finite differences, where the variable Riemann–Liouville derivative approximation is based on the shifted GrÜnwald approximation technique and the numerical scheme is still convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kilbas, A.A., Sirvastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Amsterdam (2006)

    Google Scholar 

  2. Ross, B.: Fractional Calculus and Its Applications, Lecture Notes in Mathematics, vol. 457. Springer (1975)

    Google Scholar 

  3. Oldham, K.B., Spanier, J.: The fractional calculus theory and applications of differentiation and integration of arbitrary order. Dower, New York (2006)

    MATH  Google Scholar 

  4. Cansiz, M.: Kesirli Diferensiyel Denklemler ve Uygulaması, Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, pp. 16–33 (2010)

    Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Ciesielski, M., Leszcynski, J.: Numerical Simulations of Anomalous Diffusion. Computer Methods Mech Conference, Gliwice Wisla Poland (2003)

    Google Scholar 

  7. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 1, 264–274 (2006)

    Article  MathSciNet  Google Scholar 

  8. Odibat, Z.M.: Approximations of fractional integrals and Caputo derivatives. Appl. Math. Comput., 527–533 (2006)

    Google Scholar 

  9. Odibat, Z.M.: Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 79(7), 2013–2020 (2009)

    Article  MathSciNet  Google Scholar 

  10. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ford, N.J., Joseph Connolly, A.: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229, 382–391 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Alg. 26, 333–346 (2001)

    Article  MathSciNet  Google Scholar 

  13. Sweilam, N.H., Khader, M.M., Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equations. Phys. Lett. A 371, 26–33 (2007)

    Article  MathSciNet  Google Scholar 

  14. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. J. Numer. Algorithms 16, 231–253 (1997)

    Article  MathSciNet  Google Scholar 

  16. Diethelm, K., Ford, N.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  17. Diethelm, K.: Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal., 479–493 (1997)

    Article  MathSciNet  Google Scholar 

  18. Diethelm, K.: The Analysis of Fractional Differential Equations, pp. 85–185. Springer Pub., Germany (2004)

    Google Scholar 

  19. Görgülü, O.: Kesirli Mertebeden Diferensiyel Denklemler için Sayısal ve Yaklaşık Yöntemler, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, pp. 13–43 (2017)

    Google Scholar 

  20. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. App. Math. Comput. 177, 488–494 (2006)

    Article  MathSciNet  Google Scholar 

  21. Odibat, Z., Momani, S.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  MathSciNet  Google Scholar 

  22. Odibat, Z., Momani, S.: Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32, 28–39 (2008)

    Article  Google Scholar 

  23. Odibat, Z., Momani, S.: Application of variational iteration method to equation of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7, 271–279 (2006)

    Article  MathSciNet  Google Scholar 

  24. Erturk, V.S., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1642–1654 (2008)

    Article  MathSciNet  Google Scholar 

  25. Yavuz, M., Ozdemir, N.: New Numerical Techniques for Solving Fractional Partial Differential Equations in Conformable Sense, Non-Integer Order Calculus and its Applications. Book Series: Lecture Notes in Electrical Engineering, vol. 496, pp. 49–62 (2019)

    Article  MathSciNet  Google Scholar 

  26. Yavuz, M., Ozdemir, N., Baskonus, M.H.: Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. Eur. Phy. J. Plus 133(6), 215 (2018)

    Article  Google Scholar 

  27. Yavuz, M., Ozdemir, N.: European vanilla option pricing model of fractional order without singular kernel. Fractal Fractional 2(1), 3 (2018)

    Article  MathSciNet  Google Scholar 

  28. Er, F.N.: Kısmi Türevli Kesirli Mertebeden Lineer Schrodinger Denklemlerinin Sayısal Çözümleri, Doktora Tezi, İstanbul Külür Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, pp. 14–63 (2015)

    Google Scholar 

  29. Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background, Doktora Tezi, Technische Universität Braunschweig, Germany, pp. 35–63 (2005)

    Google Scholar 

  30. Cao, J., Qiu, Y.: High order numerical scheme for variable order fractional ordinary differential equations. Appl. Math. Lett. 61, 88–94 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ayaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayaz, F., Güner, İ.B. (2020). A Numerical Approach for Variable Order Fractional Equations. In: Machado, J., Özdemir, N., Baleanu, D. (eds) Numerical Solutions of Realistic Nonlinear Phenomena. Nonlinear Systems and Complexity, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-37141-8_11

Download citation

Publish with us

Policies and ethics