Skip to main content
Log in

Fractional State Space Analysis of Temperature Time Series

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Ahmed, R. Rudra, T. Dickinson, and M. Ahmed, Trend and periodicity of temperature time series in Ontario. American J. of Climate Change 3 (2014), 272–288.

    Google Scholar 

  2. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific (2012).

    MATH  Google Scholar 

  3. I. Borg and P. J. Groenen, Modern Multidimensional Scaling-Theory and Applications. Springer-Verlag, New York (2005).

    MATH  Google Scholar 

  4. R. Bove, V. Pelino, and L. De Leonibus, Complexity in rainfall phenomena. Commun. in Nonlinear Sci. and Numer. Simulation 11, No 6 (2006), 678–684.

    MATH  Google Scholar 

  5. P. Brohan, J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones, Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. of Geophysical Research: Atmospheres (1984-2012) 111, No D12 (2006).

    Google Scholar 

  6. T. F. Cox and M. A. A. Cox, Multidimensional Scaling. Chapman & Hall/CRC, Boca Raton (2001).

    MATH  Google Scholar 

  7. E. C. de Oliveira and J. Machado, A review of definitions for fractional derivatives and integrals. Mathematical Problems in Engineering 2014 (2014), Article ID 238459, 6 p.

  8. C. Deser, A. S. Phillips, and M. A. Alexander, Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters 37, No 10 (2010), Paper No 2010GL043321, 6 p.

    Google Scholar 

  9. L. Dorcak, Numerical models for the simulation of the fractional-order control systems. arXiv Preprint math/0204108 (2002).

    Google Scholar 

  10. D. Founda, K. Papadopoulos, M. Petrakis, C. Giannakopoulos, and P. Good, Analysis of mean, maximum, and minimum temperature in athens from 1897 to 2001 with emphasis on the last decade: trends, warm events, and cold events. Global and Planetary Change 44, No 1 (2004), 27–38.

    Google Scholar 

  11. S. Gakkhar and A. Singh. Complex dynamics in a prey predator system with multiple delays. Commun. in Nonlinear Sci. and Numer. Simulation 17, No 2 (2012), 914–929.

    MathSciNet  MATH  Google Scholar 

  12. Q.-S. Ge, J.-Y. Zheng, Z.-X. Hao, X.-M. Shao, W.-C. Wang, and J. Luterbacher, Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Res. Letters 37, No 3 (2010), Paper No 2009GL041281, 5 p.

    Google Scholar 

  13. J. Grieser, S. Trömel, and C.-D. Schönwiese, Statistical time series decomposition into significant components and application to european temperature. Theoretical and Applied Climatology 71, No 3–4 (2002), 171–183.

    Google Scholar 

  14. J. Hansen, R. Ruedy, M. Sato, and K. Lo, Global surface temperature change. Reviews of Geophysics 48, No 4 (2010), Paper No 2010RG000345, 29 p.

    Google Scholar 

  15. J. A. Hartigan, Clustering Algorithms. John Wiley & Sons, Inc. (1975).

    MATH  Google Scholar 

  16. P. Holoborodko, Smooth noise robust differentiators (2008). http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators.

    Google Scholar 

  17. G. L. Hughes, S. S. Rao, and T. S. Rao, Statistical analysis and timeseries models for minimum/maximum temperatures in the Antarctic Peninsula. In: Proc. Royal Soc. of London A: Mathematical, Physical and Engineering Sci. 463, (2007), 241–259.

    MATH  Google Scholar 

  18. C. M. Ionescu, The Human Respiratory System: An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics. Springer Science & Business Media (2013).

    MATH  Google Scholar 

  19. M. Kenneth and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley New York (1993).

    MATH  Google Scholar 

  20. J. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, No 1 (1964), 1–27.

    MathSciNet  MATH  Google Scholar 

  21. J. B. Kruskal and M. Wish, Multidimensional Scaling. Sage Publications, Newbury Park (1978).

    Google Scholar 

  22. A. M. Lopes and J. T. Machado, Fractional order models of leaves. J. of Vibration and Control 20, No 7 (2014), 998–1008.

    MathSciNet  Google Scholar 

  23. A. M. Lopes and J. T. Machado, State space analysis of forest fires. J. of Vibration and Control 2015 (2015), 12 p.; DOI: 10.1177/1077546314565687.

  24. A. M. Lopes and J. T. Machado, Analysis of temperature time-series: Embedding dynamics into the MDS method. Commun. in Nonlinear Sci. and Numer. Simulation 19, No 4 (2014), 851–871.

    MATH  Google Scholar 

  25. A. M. Lopes and J. T. Machado, Dynamic analysis and pattern visualization of forest fires. Plos One 9, No 8 (2014), e105465.

    Google Scholar 

  26. A. M. Lopes, J. T. Machado, C. M. Pinto, and A. M. Galhano, Fractional dynamics and mds visualization of earthquake phenomena. Computers and Mathematics with Appl. 66, No 5 (2013), 647–658.

    MathSciNet  Google Scholar 

  27. Y. Luo and Y. Chen, Fractional Order Motion Controls. John Wiley & Sons (2012).

    Google Scholar 

  28. J. T. Machado, A. M. Galhano and J. J. Trujillo, Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 416, No 2 (2013), 479–500; DOI: 10.2478/s13540-013-0030-y; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  29. J. T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus. Commun. in Nonlinear Sci. and Numer. Simulation 16, No 3 (2011), 1140–1153.

    MathSciNet  MATH  Google Scholar 

  30. J. T. Machado and A. M. Lopes, Analysis and visualization of seismic data using mutual information. Entropy 15, No 9 (2013), 3892–3909.

    MathSciNet  MATH  Google Scholar 

  31. J. T. Machado and A. M. Lopes, The persistence of memory. Nonlinear Dynamics 79, No 1 (2014), 63–82.

    Google Scholar 

  32. J. T. Machado and A. M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus. Fract. Calc. Appl. Anal. 418, No 2 (2015), 459–478; DOI: 10.1515/fca-2015-0029; http://www.degruyter.com/view/j/fca.2015.18.issue-2/fca-2015-0029/fca-2015-0029.xml.

    MathSciNet  MATH  Google Scholar 

  33. J. T. Machado, A. M. Lopes, F. Duarte, M.D. Ortigueira and R. Rato, Rhapsody in fractional. Fract. Calc. Appl. Anal. 417, No 4 (2014), 1188–1214; DOI: 10.2478/s13540-014-0206-0; http://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  34. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010).

    MATH  Google Scholar 

  35. W. L. Martinez and A. R. Martinez, Exploratory Data Analysis with MATLAB. Chapman & Hall/CRC, Boca Raton (2005).

    MATH  Google Scholar 

  36. J. J. Oñate and A. Pou, Temperature variations in Spain since 1901: A preliminary analysis. International J. of Climatology 16, No 7 (1996), 805–815.

    Google Scholar 

  37. I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011).

    MATH  Google Scholar 

  38. C. M. Pinto, A. M. Lopes, and J. T. Machado, A review of power laws in real life phenomena. Commun. in Nonlinear Sci. and Numer. Simulation 17, No 9 (2012), 3558–3578.

    MathSciNet  MATH  Google Scholar 

  39. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  40. J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer (1998).

    MATH  Google Scholar 

  41. C. E. Shannon, A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5, No 1 (2001), 3–55.

    MathSciNet  Google Scholar 

  42. H. Sheng, Y. Chen, and T. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer Science & Business Media (2011).

    MATH  Google Scholar 

  43. R. N. Shepard, The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika 27, No I and II (1962), 219–246 and 219–246.

    MathSciNet  MATH  Google Scholar 

  44. M. F. Silva, J. Machado, and A. Lopes, Fractional order control of a hexapod robot. Nonlinear Dynamics 38, No 1–4 (2004), 417–433.

    MATH  Google Scholar 

  45. S. Srinivasa, A review on multivariate mutual information. Univ. of Notre Dame, Notre Dame, Indiana 2 (2005), 1–6.

    Google Scholar 

  46. D. B. Stephenson and F. J. Dolas-Reyes, Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus A 52, No 3 (2000), 300–322.

    Google Scholar 

  47. A. Strehl and J. Ghosh, Cluster ensembles-a knowledge reuse framework for combining multiple partitions. The J. of Machine Learning Research 3 (2003), 583–617.

    MathSciNet  MATH  Google Scholar 

  48. J. Tenreiro Machado and A. M. Lopes, Dynamical analysis of the global warming. Mathematical Problems in Engineering 2012 (2012), Article ID 971641, 12 p.

  49. W. Torgerson, Theory and Methods of Scaling. Wiley, New York (1958).

    Google Scholar 

  50. D. Valério, J. T. Machado and V. Kiryakova, Some Pioneers of the Applications of Fractional Calculus. Fract. Calc. Appl. Anal. 417, No 2 (2014), 552–578; DOI: 10.2478/s13540-014-0185-1; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  51. D. Valério, J. J. Trujillo, M. Rivero, J. Machado, and D. Baleanu, Fractional calculus: A survey of useful formulas. The European Physical J. Special Topics 222, No 8 (2013), 1827–1846.

    Google Scholar 

  52. R. Vassoler and G. Zebende, DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and its Applications 391, No 7 (2012), 2438–2443.

    Google Scholar 

  53. F. M. Viola, S. L. Paiva, and M. A. Savi, Analysis of the global warming dynamics from temperature time series. Ecological Modelling 221, No 16 (2010), 1964–1978.

    Google Scholar 

  54. Z. Wu, N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, On the time-varying trend in global-mean surface temperature. Climate Dynamics 37, No 3–4 (2011), 759–773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, J.A.T., Lopes, A.M. Fractional State Space Analysis of Temperature Time Series. FCAA 18, 1518–1536 (2015). https://doi.org/10.1515/fca-2015-0088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0088

Keywords

Navigation