Skip to main content
Log in

On the Invalidity of Fourier Series Expansions of Fractional Order

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The purpose of this short paper is to show the invalidity of a Fourier series expansion of fractional order as derived by G. Jumarie in a series of papers. In his work the exponential functions ein?x are replaced by the Mittag-Leffler functions Ea (i(n?x)a), over the interval [0,Ma/?] where 0 < ? < 8 and Ma > 0 is the period of the function Ea (ixa), i.e., Ea (ixa) = Ea (i(x +Ma)a)

He showed that any smooth periodic function f with period Ma/? can be expanded in a Fourier-type series. We will show that the only possible period of the function Ea (ixa) is Ma = 0; hence the invalidity of any Fourier-type series expansion of f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aczél, Lectures On Functional Equations and Their Applications. Academic Press, New York (1966).

    MATH  Google Scholar 

  2. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).

    Book  Google Scholar 

  3. R. Gorenflo, F. Mainardi, and H. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In: 8th Int. Coll. on Differential Equations, Brill Academic Pub., Utrecht (1997), 195–202.

    Google Scholar 

  4. H.J. Haubold, A.M. Mathai, and R.K. Saxena, Mittag-Leffler Functions and Their Applications. J. of Applied Mathematics 2011 (2011), 1–51.

    Article  MathSciNet  Google Scholar 

  5. G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Letters 18 (2005), 739–748.

    Article  MathSciNet  Google Scholar 

  6. G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non differentiable function. Further results. Computers and Mathematics with Applications 51 (2006), 1367–1376.

    Article  MathSciNet  Google Scholar 

  7. G. Jumarie, Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics. Chaos, Solitons & Fractals 28 (2006), 1285–1305.

    Article  MathSciNet  Google Scholar 

  8. G. Jumarie, Fourier’s transform of fractional order via Mittag-Leffler function and modified Riemann-Liouville derivative. J. Appl. Math. & Informatics 26, No 5–6 (2008), 1101–1121.

    Google Scholar 

  9. G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Letters 22 (2009), 378–385.

    Article  MathSciNet  Google Scholar 

  10. G. Jumarie, Laplace’s transform of fractional order via the Mittag- Leffler function and modified Riemann-Liouville derivative. Appl. Math. Letters 22 (2009), 1659–1664.

    Article  MathSciNet  Google Scholar 

  11. G. Jumarie, Cauchy’s integral formula via the modified Riemann- Liouville derivative for analytic functions of fractional order. Applied Math. Letters 23 (2010), 1444–1450.

    Article  MathSciNet  Google Scholar 

  12. G. Jumarie, On the fractional solution of the equation f(x + y) = f(x)f(y) and its application to fractional Laplace’s transform. Appl. Math. & Comput. 219 (2012), 1625–1643.

    MathSciNet  MATH  Google Scholar 

  13. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006).

    MATH  Google Scholar 

  14. C.-S. Liu, Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonlinear Sci. Numer. Simulat. 22 (2015), 92–94.

    Article  MathSciNet  Google Scholar 

  15. F. Mainardi, R. Gorenflo, On Mittag-Leffler functions in fractional evolution processes. J. Comput. and Appl. Math. 118 (2000), 283–299.

    Article  MathSciNet  Google Scholar 

  16. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).

    Book  Google Scholar 

  17. F. Mainardi, On some properties of the Mittag-Leffler function Ea(-tα), completely monotone for t > 0 with 0 < α < 1. Discrete and Continuous Dynamical Systems, Ser. B 19, No 7 (2014), 2267–2278.

    Article  MathSciNet  Google Scholar 

  18. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, N. York (1993).

    MATH  Google Scholar 

  19. G. Mittag-Leffler, Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 137 (1903), 554–558.

    MATH  Google Scholar 

  20. J. Peng, K. Li, A note on property of the Mittag-Leffler function. J. Math. Anal. Appl. 370 (2010), 635–638.

    Article  MathSciNet  Google Scholar 

  21. H. Pollard, The completely monotonic character of the Mittag-Leffler function eα(-x). Bull. Am. Math. Soc. 54 (1948), 1115–1116.

    Article  MathSciNet  Google Scholar 

  22. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Sci. Publ., Singapore (1993).

    MATH  Google Scholar 

  23. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications. 2nd Ed., DeGruyter, Berlin/Boston (2012).

    Book  Google Scholar 

  24. V. Tarasov, No violation of the Leibnitz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2945–2948.

    Article  Google Scholar 

  25. V. Tarasov, Comments on “The Minkowski’s space-time is consistent with differential geometry of fractional order” [Phys. Lett. A 363 (2007), 5–11]. Phys. Lett. 379 (2015), 1071–1072.

    Article  MathSciNet  Google Scholar 

  26. V. Tarasov, On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 30, No 1–3 (2015), 1–4.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Massopust.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massopust, P.R., Zayed, A.I. On the Invalidity of Fourier Series Expansions of Fractional Order. FCAA 18, 1507–1517 (2015). https://doi.org/10.1515/fca-2015-0087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0087

MSC 2010

Keywords

Navigation