Skip to main content
Log in

Construction and analysis of series solutions for fractional quasi-Bessel equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we introduce fractional quasi-Bessel equations

$$\begin{aligned} \sum _{i=1}^{m}d_i x^{\xi _i}D^{\alpha _i} u(x) + (x^\beta - \nu ^2)u(x)=0 \end{aligned}$$

and construct their existence theory in the class of fractional series solutions. In order to find the parameters of the series, we derive the characteristic equation, which is surprisingly independent of the terms with non-matching parameters \(\xi _i\ne \alpha _i\). Our methodology allows us to obtain new results for a broad class of fractional differential equations including quasi-Euler equations. As a particular example, we demonstrate how our approach works for the constant-coefficient equations. The theoretical results are justified computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Musalhi, F., Al-Salti, N., Karimov, E.: Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 21(1), 200–219 (2018). https://doi.org/10.1515/fca-2018-0013

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanackovic, T., Dolicanin, D., Pilipovic, S., Stankovic, B.: Cauchy problems for some classes of linear fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1039–1059 (2014). https://doi.org/10.2478/s13540-014-0213-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bengochea, G.: An operational approach with application to fractional Bessel Equation. Fract. Calc. Appl. Anal. 18(5), 1201–1211 (2015). https://doi.org/10.1515/fca-2015-0069

    Article  MathSciNet  MATH  Google Scholar 

  4. Betancor, J.J., Castro, A.J., Stinga, P.R.: The fractional Bessel equation in Hölder spaces. J. of Approximation Theory 184, 55–99 (2014). https://doi.org/10.1016/j.jat.2014.05.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Droghei, R.: On a solution of a fractional hyper-Bessel differential equation by means of a multi-index special function. Fract. Calc. Appl. Anal. 24(5), 1559–1570 (2021). https://doi.org/10.1515/fca-2021-0065

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubovski, P.B., Slepoi, J.: Analysis of solutions of some multi-term fractional Bessel equations. Fract. Calc. Appl. Anal. 24(5), 1380–1408 (2021). https://doi.org/10.1515/fsa-2021-0059

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubovski, P.B., Slepoi, J.: Dual approach as empirical reliability for fractional differential equations. J. of Physics: Conference Series 2099, 1–12 (2021). https://doi.org/10.1088/174206596/2099/1/012004

    Article  MATH  Google Scholar 

  8. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3), 299–318 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  10. Kilbas, A.A., Zhukovskaya, N.V.: Euler-type non-homogeneous differential equations with three Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(2), 205–234 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Scientific & Technical, John Wiley & Sons, Inc., New York (1994)

  12. Kiryakova, V.: From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. 17(4), 977–1000 (2014). https://doi.org/10.2478/s13540-014-0210-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Kiryakova, V.: Transmutation method for solving hyper-Bessel differential equations based on the Poisson-Dimovski transformation. Fract. Calc. Appl. Anal. 11(3), 299–316 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Kim, M.-Ha, Ri, G.-Chol, O, H.-Chol: Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives. Fract. Calc. Appl. Anal. 17(1), 79–95 (2014). https://doi.org/10.2478/s13540-014-0156-6

  15. Okrasiński, W., Plociniczak, L.: A note on fractional Bessel equation and its asymptotics. Fract. Calc. Appl. Anal. 16(3), 559–572 (2013). https://doi.org/10.2478/s13540-013-0036-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press (1998)

  17. Rodrigues, M.M., Viera, N., Yakubovich, S.: Operational calculus for Bessel’s fractional equation. Operational Theory: Advances and Applications 229, 357–370 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  19. Zhukovskaya, N.V., Kilbas, A.A.: Solving homogeneous fractional differential equations of Euler type. Differential Equations 47(12), 1714–1725 (2011)

    Article  MathSciNet  Google Scholar 

  20. Zhukovskaya, N.V.: Representation of solutions of Euler-type differential equations of fractional order using fractional analogue of Green function. Chelyabinsk Physical and Mathematical Journal 3(2), 129–143 (in Russian) (2018). https://doi.org/10.24411/2500-0101-2018-13201

Download references

Acknowledgements

The authors would like to thank Professor Boyadjiev for drawing our attention to the fractional Bessel equation. Also, the authors are obliged to Professor Kiryakova and the Reviewers for the valuable recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel B. Dubovski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovski, P.B., Slepoi, J.A. Construction and analysis of series solutions for fractional quasi-Bessel equations. Fract Calc Appl Anal 25, 1229–1249 (2022). https://doi.org/10.1007/s13540-022-00045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00045-z

Keywords

Mathematics Subject Classification

Navigation