Skip to main content

Advertisement

Log in

Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A presulphided treatment was applied to the oxidic Ni-Mo-Zn/Al2O3 catalyst (nickel catalyst) in order to avoid thermal run-away during initiation of the hydrogenation of pyrolysis gasoline. The physico-chemical properties of the prepared oxidic nickel catalyst, the reduced and passivated (RP) nickel catalyst and the sulphided (RPS) nickel catalyst were characterised using N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The TPR results showed that the reducibility of the RP Ni-Mo-Zn/Al2O3 catalyst was improved over the oxidic nickel catalyst. The XPS spectra confirmed the binding energy of the RPS nickel catalyst to be higher than that of the oxidic nickel catalyst. The catalytic performance was evaluated on a fixed-bed reactor (reaction temperature between 30 °C and 70°C, at 2.8 MPa of total pressure and weight hourly space velocity of 2.0 h−1, the volume of H2/pyrogasoline = 200: 1). The rising temperature of the RPS nickel catalyst was almost 20°C lower than that of the oxidic nickel catalyst during the initial stage of the hydrogenation reaction. The results indicated that the RPS nickel catalyst exhibited better stability than the oxidic nickel catalyst during the start-up period, thereby providing a better selectivity in long-term operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, Y. M., Chang, J. R., & Wu, J. C. (1986). Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst. Applied Catalysis, 24, 273—285. DOI: 10.1016/s0166–9834(00)81275–0.

  • Garbarino, G., Campodonico, S., Perez, A. R., Carnasciali, M. M., Riani, P., Finocchio, E., & Busca, G. (2013). Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables. Applied Catalysis A, 452, 163–173. DOI: 10.1016/j.apcata.2012.10.039.

    Article  CAS  Google Scholar 

  • Gaspar, A. B., dos Santos, G. R., Costa, R. S., & da Silva, M. A. P. (2008). Hydrogenation of synthetic PYGAS-effects of zirconia on Pd/Al2O3. Catalysis Today, 133–135, 400–405. DOI: 10.1016/j.cattod.2007.12.058.

    Article  Google Scholar 

  • Ge, H., Li, X. K., Wang, G. F., Qin, Z. F., Li, Z. J., & Wang, J. G. (2010). Presulfidation of CoMo and NiMoP catalysts by ammonium thiosulfate. Chinese Journal of Catalysis, 31, 18–20. DOI: 10.1016/s1872–2067(09)60035–8.

    Article  CAS  Google Scholar 

  • Hoffer, B. W., van Langeveld, A. D., Janssens, J. P., Bonne, R. L. C., Lok, C. M., & Moulijn, J. A. (2000). Stability of high dispersed Ni/AlO catalysts: Effects of pretreatment. Journal of Catalysis, 192, 432–440. DOI: 10.1006/jcat.2000.2867.

    Article  CAS  Google Scholar 

  • Hoffer, B. W., Devred, F., Kooyman, P. J., van Langeveld, A. D., Bonne, R. L. C., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2002). Characterization of ex situ presulfided Ni/Al2O3 catalysts for pyrolysis gasoline hydrogenation. Journal of Catalysis, 209, 245–255. DOI: 10.1006/jcat.2002.3633.

    Article  CAS  Google Scholar 

  • Hoffer, B. W., Bonne, R. L. C., van Langeveld, A. D., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2004). Enhancing the startup of pyrolysis gasoline hydrogenation reactors by applying tailored ex situ presulfided Ni/Al2O3 catalysts. Fuel, 83, 1–8. DOI: 10.1016/s0016–2361(03)00210–2.

    Article  CAS  Google Scholar 

  • Kim, K. S., & Davis, R. E. (1972–1973). Electron spectroscopy of the nickel-oxygen system. Journal of Electron Spectroscopy and Related Phenomena, 1, 251–258. DOI: 10.1016/0368–2048(72)85014-x.

    Article  Google Scholar 

  • L’Argentiere, P. C., Liprandi, D. A., & Figoli, N. S. (1995). Regeneration of Ni/Al2O3 poisoned by thiophene during the selective hydrogenation of styrene. Industrial & Engineering Chemistry Research, 34, 3713–3717. DOI: 10.1021/ie00038a006.

    Article  Google Scholar 

  • Lin, T. B., & Chou, T. C. (1994). Selective hydrogenation of isoprene on eggshell and uniform palladium profile catalysts. Applied Catalysis A, 108, 7–19. DOI: 10.1016/0926- 860x(94)85176-x.

    Article  CAS  Google Scholar 

  • Mangnus, P. J., Poels, E. K., van Langeveld, A. D., & Moulijn, J. A. (1992). Comparison of the sulfiding rate and mechanism of supported NiO and Ni0 particles. Journal of Catalysis, 137, 92–101. DOI: 10.1016/0021–9517(92)90141–4.

    Article  CAS  Google Scholar 

  • Metaxas, K. C., & Papayannakos, N. G. (2008). Studying the internal mass transfer phenomena inside a Ni/Al2O3 catalyst for benzene hydrogenation. Chemical Engineering Journal, 140, 352–357. DOI: 10.1016/j.cej.2007.10.010.

    Article  CAS  Google Scholar 

  • Poels, E. K., van Beek, W. P., den Hoed, W., & Visser, C. (1995). Deactivation of fixed-bed nickel hydrogenation catalysts by sulfur. Fuel, 74, 1800–1805. DOI: 10.1016/0016-2361(95)80011–6.

    Article  CAS  Google Scholar 

  • Qian, Y., Liang, S. Q., Wang, T. H., Wang, Z. B., Xie, W., & Xu, X. L. (2011). Enhancement of pyrolysis gasoline hydrogenation over Zn-and Mo-promoted Ni/7-Al2O3 catalysts. Catalysis Communication, 12, 851–853. DOI: 10.1016/j.catcom.2011.02.006.

    Article  CAS  Google Scholar 

  • Reddy, K. M., Pokhriyal, S. K., Ratnasamy, P., & Sivasanker, S. (1992). Reforming of pyrolysis gasoline over platinum-alumina catalysts containing MFI type zeolites. Applied Catalysis A, 83, 1–13. DOI: 10.1016/0926–860x(92)80021–4.

    Article  CAS  Google Scholar 

  • Ringelhan, C., Burgfels, G., Neumayr, J. G., Seuffert, W., Klose, J., & Kurth, V. (2004). Conversion of naphthenes to a high value steamcracker feedstock using H-ZSM-5 based catalysts in the second step of the ARINO®-process. Catalysis Today, 97, 277–282. DOI: 10.1016/j.cattod.2004.07.004.

    Article  CAS  Google Scholar 

  • Savva, P. G., Goundani, K., Vakros, J., Bourikas, K., Fountzoula, C., Vattis, D., Lycourghiotis, A., & Kordulis, C. (2008). Benzene hydrogenation over Ni/Al2O3 catalysts prepare by conventional and sol-gel techniques. Applied Catalysis B, 79, 199–207. DOI: 10.1016/j.apcatb.2007.10.023.

    Article  CAS  Google Scholar 

  • Scheffer, B., Molhoek, P., & Moulijn, J. A. (1989). Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulphurization catalysts. Appied Catalysis, 46, 11–30. DOI: 10.1016/s0166–9834(00)81391–3.

    Article  CAS  Google Scholar 

  • Silvestre-Albero, J., Rupprechter, G., & Freund, H. J. (2006). Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/Ni(110) model catalysts: Effect of Pd particle size. Journal of Catalysis, 240, 58–65. DOI: 10.1016/j.jcat.2006.02.024.

    Article  CAS  Google Scholar 

  • Westerterp, K. R., & Kronberg, A. E. (2002). How to prevent runaways in trickle-bed reactors for pygas hydrogenation. Chemical Engineering & Technology, 25, 595–601. DOI: 10.1002/1521–4125(200206)25:6<595::aid-ceat595>3.0.co; 2–1.

    Article  CAS  Google Scholar 

  • Zhou, Z. M., Zeng, T. Y., Cheng, Z. M., & Yuan, W. K. (2010).. Industrial & Engineering Chemistry Research, 49, 11112–11118. DOI: 10.1021/ie1003043.

    Article  CAS  Google Scholar 

  • Zhu, J. H., Cheng, Y. L., Tang, K. J., Wang, L. M., Li, S. Q., & Yang, W. M. (2012). Synthesis of Ni-Mo and Co-Mo-Ni nano-sulfides and their stable catalysis on complicated full-ranged pyrolysis gasoline hydrorefinery. RSC Advances, 2, 8957–8961. DOI: 10.1039/c2ra20953e.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZX., Sun, W., Liang, SQ. et al. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst. Chem. Pap. 70, 769–776 (2016). https://doi.org/10.1515/chempap-2016-0013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0013

Keywords

Navigation