Skip to main content
Log in

CO Oxidation on Pd/Al2O3 Catalysts under Stoichiometric Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This paper deals with the CO oxidation on Pd/Al2O3 catalysts under stoichiometric conditions relevant for the after-treatment of gasoline exhaust. A series of catalysts was prepared by incipient wetness impregnation, whereas the Pd load was systematically varied from 0.1 to 5 wt%. The samples were physical-chemically characterized by using N2 physisorption (BET, BJH), powder X-ray diffraction (PXRD), temperature programmed desorption of H2 (HTPD), temperature programmed desorption of CO (CO-TPD) and transmission electron microscopy (TEM). The performance of the powder catalysts was evaluated on a laboratory test bench employing a simple gasoline model exhaust with stoichiometric CO and O2 fractions. From the characterization data it was deduced that the Pd dispersion of the catalysts decreases with precious metal load corresponding to increase in mean Pd particle size going up from ca. 5–12 nm. The correlation of the physical–chemical characteristics with the CO oxidation activity of the Pd/Al2O3 samples clearly indicated that the catalytic efficiency was predominately driven by the number of active Pd sites, whereas no size effect of the Pd entities was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cowley A (2013) Platinum 2013 interim review, Johnson Matthey

  2. Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv Catal 28:1–78

    CAS  Google Scholar 

  3. Kang SB, Han SJ, Nam SB, Nam IS, Cho BK, Kim CH, Oh SH (2012) Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC. Chem Eng J 207–208:117–121

    Article  Google Scholar 

  4. Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klötzer B (2007) Comparison of the reactivity of different Pd–O species in CO oxidation. Phys Chem Chem Phys 9:533–540

    Article  CAS  Google Scholar 

  5. Bakyarova E, Fornasiero P, Kaspar J, Graziani M (1998) CO oxidation on Pd/CeO2–ZrO2 catalysts. Catal Today 45:179–183

    Article  Google Scholar 

  6. Satsuma A, Osaki K, Yanagihara M, Ohyama J, Shimizu K (2013) Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B Environ 132–133:511–518

    Article  Google Scholar 

  7. Chen M, Wang XV, Zhang L, Tang Z, Wan H (2010) Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir 26:18113–18118

    Article  CAS  Google Scholar 

  8. Schalow T, Brandt B, Laurin M, Schauermann S, Guimond S, Kuhlenbeck H, Libuda J, Freund HJ (2006) Formation of interface and surface oxides on supported Pd nanoparticles. Surf Sci 600:2528–2542

    Article  CAS  Google Scholar 

  9. Klug HP, Alexander E (1954) X-Ray diffraction procedures. Wiley-VCH, New York

    Google Scholar 

  10. Gdowski GE, Felter TE, Stulen RH (1987) Effect of surface temperature on the sorption of hydrogen by Pd(111). Surf Sci Lett 181(3):L147–L155

    CAS  Google Scholar 

  11. Canton P, Menegazzo F, Polizzi S, Pinna F, Pernicone N, Riello P, Fagherazzi G (2003) Structure and size of poly-domain Pd nanoparticles supported on silica. Catal Lett 88(3–4):141–146

    Article  CAS  Google Scholar 

  12. Noh JS, Lee JM, Lee W (2011) Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sens 11:825–851

    Article  CAS  Google Scholar 

  13. Dropsch H, Baerns M (1997) CO adsorption on supported Pd catalysts studied by adsorption microcalorimetry and temperature programmed desorption. Appl Catal A General 158(1–2):163–183

    Article  CAS  Google Scholar 

  14. Matolin V, Jungwirtha I, Tomkova E (1991) Site dependent dissociation of CO on supported Pd particle surface: a TPD study. Prog Surf Sci 35:175–178

    Article  Google Scholar 

  15. Behm RJ, Christmann K, Ertl G, Van Hove MA (1980) Adsorption of CO on Pd(100). J Chem Phys 73:2984–2995

    Article  CAS  Google Scholar 

  16. Carlsson AF, Mschitzki M, Bäumer M, Freund HJ (2003) The structure and reactivity of Al2O3-supported cobalt–palladium particles: a CO-TPD, STM, and XPS study. J Phys Chem B 107:778–785

    Article  CAS  Google Scholar 

  17. Rose MK, Mitsui T, Dunphy J, Borg A, Ogletree DF, Salmeron M, Sautet P (2002) Ordered structures of CO on Pd(111) studied by STM. Surf Sci 512:48–60

    Article  CAS  Google Scholar 

  18. Bergeret G, Gallezot P (2008) Handbook of heterogeneous catalysis. Wiley-VCH, Wiley, Weinheim, Chichester, pp 738–765

    Google Scholar 

  19. Wang R, He H, Liu LC, Dai HX, Zhao Z (2012) Shape-dependent catalytic activity of palladium nanocrystals for the oxidation of carbon monoxide. Catal Sci Technol 2:575–580

    Article  CAS  Google Scholar 

  20. Rainer DR, Koranne M, Vesecky SM, Goodman DW (1997) CO + O2 and CO + NO reactions over Pd/Al2O3 catalysts. J Phys Chem 101:10769–10774

    Article  CAS  Google Scholar 

  21. Yoon DY, Kim YJ, Lim JH, Cho BK, Hong SB, Nam IS, Choung JW (2015) Thermal stability of Pd-containing LaAlO3 perovskite as a modern TWC. J Catal 330:71–83

    Article  CAS  Google Scholar 

  22. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman W (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  23. Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund HJ (2007) Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Phys Chem Chem Phys 9:1347–1361

    Article  CAS  Google Scholar 

  24. Chou P, Vannice MA (1987) Calorimetric heat of adsorption measurements on palladium: II. Influence of crystallite size and support on CO adsorption. J Catal 104:17–30

    Article  CAS  Google Scholar 

  25. Shaikhutdinov Sh, Heemeier M, Hoffmann J, Meusel I, Richter B, Bäumer M, Kuhlenbeck H, Libuda J, Freund HJ, Oldman R, Jackson SD, Konvicka C, Schmid M, Varga P (2002) Interaction of oxygen with palladium deposited on a thin alumina film. Surf Sci 501:270–281

    Article  CAS  Google Scholar 

  26. Meusel I, Hoffmann J, Hartmann J, Libuda J, Freund HJ (2001) Size dependent reaction kinetics on supported model catalysts: a molecular beam/IRAS study of the CO oxidation on alumina-supported Pd particles. J Phys Chem B 105:3567–3576

    Article  CAS  Google Scholar 

  27. Stara I, Nehasil V, Matolin V (1995) The influence of particle size on CO oxidation on Pd/alumina model catalysts. Surf Sci 331–333:173–177

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by European Social Fund (ESF) and Saxon State Ministry of Science and Arts (SMWK) under the project BioRedKat (SAB 100097882) is thankfully acknowledged. The authors also thank Manuel Gliech (TU Berlin) for TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kureti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, D.Q., Kureti, S. CO Oxidation on Pd/Al2O3 Catalysts under Stoichiometric Conditions. Top Catal 60, 260–265 (2017). https://doi.org/10.1007/s11244-016-0608-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0608-9

Keywords

Navigation