Skip to main content

Advertisement

Log in

Radical-scavenging activity of glutathione, chitin derivatives and their combination

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Since chitosan and its amino-, cinnamo- or cinnamo-amino- derivatives are acid-soluble, the effect of acetic acid on hyaluronan (HA) macromolecules degraded by Cu(II) ions and ascorbate was examined to produce reactive oxygen species (ROS). Further, the effects of glutathione (GSH), chitosan and its derivatives, added individually or in combination, on the quenching of ROS and ABTS˙+ cation radical were examined using rotational viscometry and ABTS assay, respectively. The results of the rotational viscometry indicated a rapid degradation of HA by ROS after the addition of acetic acid. Chitosan and its derivatives moderately decreased the rate of HA degradation, while GSH decreased the rate of HA degradation more significantly. Moreover, GSH enhanced the protection of HA macromolecules against their degradation in the presence of chitosan or its derivatives. The results of the ABTS assay confirmed the results of the rotational viscometry. The GSH in the combination with chitosan and its derivatives reduced ABTS˙+ more intensively than when added individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aya, K. L., & Stern, R. (2014). Hyaluronan in wound healing: Rediscovering a major player. Wound Repair and Regeneration, 22, 579–593. DOI: 10.1111/wrr.12214.

    Article  Google Scholar 

  • Banasova, M., Valachova, K., Juranek, I., & Šoltés, L. (2014). Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan. Chemical Papers, 68, 1428–1434. DOI: 10.2478/s11696–014-0591–1.

    Article  CAS  Google Scholar 

  • Cyphert, J. M., Trempus, C. S., & Garantziotis, S. (2015). Size matters: Molecular weight specificity of hyaluronan effects in cell biology. International Journal of Cell Biology, 2015, article ID 563818. DOI: 10.1155/2015/563818.

  • Demirkol, O., Adams, C., & Ercal, N. (2004). Biologically important thiols in various vegetables and fruits. Journal of Agricultural and Food Chemistry, 52, 8151–8154. DOI: 10.1021/jf040266f.

    Article  CAS  Google Scholar 

  • Dodane, V., & Vilivalam, V. D. (1998). Pharmaceutical applications of chitosan. Pharmaceutical Science & Technology Today, 1, 246–253. DOI: 10.1016/s1461–5347(98)00059–5.

    Article  CAS  Google Scholar 

  • Gigante, A., & Callegari, L. (2011). The role of intra-articular hyaluronan (Sinovial®) in the treatment of osteoarthritis. Rheumatology International, 31, 427–444. DOI: 10.1007/s00296–010–1660–6.

    Article  Google Scholar 

  • Haddad, J. J., & Harb, H. L. (2005). L-γ-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Molecular Immunology, 42, 987–1014. DOI: 10.1016/j.molimm.2004.09.029.

    Article  CAS  Google Scholar 

  • Hami, Z., Amini, M., Kiani, A., & Ghazi-Khansari, M. (2013). High performance liquid chromatography coupled with precolumn derivatization for determination of oxidized glutathione level in rats exposed to paraquat. Iranian Journal of Pharmaceutical Reseach, 12, 911–916.

    CAS  Google Scholar 

  • Islam, M. M., Masum, S. M., Rahman, M. M., Molla, M. A. I., A. A., & Roya, S. K. (2011). Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic and Applied Science IJBAS-IJENS, 11, 77–80.

    Google Scholar 

  • Jeon, Y. J., Shahidi, F., & Kim, S. K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16, 159–176. DOI: 10.1081/fri-100100286.

    Article  CAS  Google Scholar 

  • Kujawa, P., Moraille, P., Sanchez, J., Badia, A., & Winnik, F. M. (2005). Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: A surface plasmon resonance spectroscopy and atomic force microscopy investigation. Journal of the American Chemical Society, 127, 9224–9234. DOI: 10.1021/ja044385n.

    Article  CAS  Google Scholar 

  • Kumar, B. A. V., Varadaraj, M. C., & Tharanathan, R. N. (2007). Low molecular weight chitosan — preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules, 8, 566–572. DOI: 10.1021/bm060753z.

    Article  CAS  Google Scholar 

  • Lim, S. T., Forbes, B., Martin, G. P., & Brown, M. B. (2001). In vivo and in vitro characterization of novel microparticulates based on hyaluronan and chitosan hydroglutamate. AAPS Pharm Sci Tech, 2, article 20. DOI: 10.1007/bf02830560.

    Article  CAS  Google Scholar 

  • Mohy Eldin, M. S., Soliman, E. A., Hashem, A. I., & Tamer, T. M. (2012). Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Advances in Polymer Technology, 31, 414–428. DOI: 10.1002/adv.20264.

    Article  CAS  Google Scholar 

  • Mohy Eldin, M. S., Hashem, A. I., Omer, A. M., & Tamer, T. M. (2015). Preparation, characterization and antimicrobial evaluation of novel cinnamyl chitosan Schiff base. International Journal of Advanced Research, 3, 741–755.

    Google Scholar 

  • Necas, J., Bartosikova, L., Brauner, P., & Kolar, J. (2008). Hyaluronic acid (hyaluronan): a review. Veterinární Medicína, 53, 397–411.

    CAS  Google Scholar 

  • Oyarzun-Ampuero, F. A., Brea, J., Loza, M. I., Torres, D., & Alonso, M. J. (2009). Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. International Journal of Pharmaceutics, 381, 122–129. DOI: 10.1016/j.ijpharm.2009.04.009.

    Article  CAS  Google Scholar 

  • Papakonstantinou, E., Roth, M., & Karakiulakis, G. (2012). Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology, 4, 253–258. DOI: 10.4161/derm.21923.

    Article  CAS  Google Scholar 

  • Rah, M. J. (2011). A review of hyaluronan and its ophthalmic applications. Optometry — Journal of the American Optometric Association, 82, 38–43. DOI: 10.1016/j.optm.2010.08.003.

    Article  Google Scholar 

  • Rapta, P., Valachova, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(II) ions. Chemistry & Biodiversity, 6, 162–169. DOI: 10.1002/cbdv.200800075.

    Article  CAS  Google Scholar 

  • Rees, M. D., Kennett, E. C., Whitelock, J. M., & Davies, M. J. (2008). Oxidative damage to extracellular matrix and its role in human pathologies. Free Radical Biology & Medicine, 44, 1973–2001. DOI: 10.1016/j.freeradbiomed.2008.03.016.

    Article  CAS  Google Scholar 

  • Reitinger, S., & Lepperdinger, G. (2013). Hyaluronan, a ready choice to fuel regeneration: A mini-review. Gerontology, 59, 71–76. DOI: 10.1159/000342200.

    Article  CAS  Google Scholar 

  • Rigby, G. W. (1936). U.S. Patent No. 2040879. Washington, D. C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Sezer, A. D., Hatipoğlu, F., Cevher, E., Ogurtan, Z., Bas, A. L., & Akbuğa, J. (2007). Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 8, E94–E101. DOI: 10.1208/pt0802039.

    Article  Google Scholar 

  • Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10, 37–51. DOI: 10.1016/s0924–2244(99)00017–5.

    Article  CAS  Google Scholar 

  • Signini, R., & Campana Filho, S. P. (1999). On the preparation and characterization of chitosan hydrochloride. Polymer Bulletin, 42, 159–166. DOI: 10.1007/s002890050448.

    Article  CAS  Google Scholar 

  • Šoltés, L., Stankovska, M., Brezova, V., Schiller, J., Arnhold, J., Kogan, G., & Gemeiner, P. (2006). Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigations. Carbohydrate Research, 341, 2826–2834. DOI: 10.1016/j.carres.2006.09.019.

    Article  Google Scholar 

  • Šoltés, L., Tamer, M. T., Veverka, M., Valachova, K., & Mohy Eldin, M. S. (2015). SK Patent Application No. PP 50322015. Banska Bystrica: Industrial Property Office of the Slovak Republic.

  • Stern, R., & Maibach, H. I. (2008). Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clinics in Dermatology, 26, 106–122. DOI: 10.1016/j.clindermatol.2007.09.013.

    Article  Google Scholar 

  • Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan—hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12. 080.

    Article  CAS  Google Scholar 

  • Topolska, D., Valachova, K., Rapta, P., Silhar, S., Panghyova, E., Horvath, A., & Šoltés, L. (2015). Antioxidative properties of Sambucus nigra extracts. Chemical Papers, 69, 1202–1210. DOI: 10.1515/chempap-2015–0138.

    Article  CAS  Google Scholar 

  • Valachova, K., Vargova, A., Rapta, P., Hrabarova, E., Drafi, F., Bauerova, K., Juranek, I., & Šoltés, L. (2011). Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chemistry & Biodiversity, 8, 1274–1283. DOI: 10.1002/cbdv.201000351.

    Article  CAS  Google Scholar 

  • Van den Bekerom, M. P. J., Mylle, G., Rys, B., & Mulier, M. (2006). Viscosupplementation in symptomatic severe hip osteoarthritis: A review of the literature and report on 60 patients. Acta Orthopaedica Belgica, 72, 560–568.

    Google Scholar 

  • Wolfrom, M. L., Maher, G. G., & Chaney, A. (1958). Chitosan nitrate. The Journal of Organic Chemistry, 23, 1990–1991. DOI: 10.1021/jo01106a049.

    Article  CAS  Google Scholar 

  • Xing, G., Ren, M., & Verma, A. (2014). Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled-cortical impact injury in rat brain: a pilot study. Frontiers in Neurology, 5, article number 173. DOI: 10.3389/fneur.2014.00173.

    Google Scholar 

  • Yamane, S., Iwasaki, N., Majima, T., Funakoshi, T., Masuko, T., Harada, K., Minami, A., Monde, K., & Nishimura, S. (2005). Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 26, 611–619. DOI: 10.1016/j.biomaterials.2004.03.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Valachová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valachová, K., Tamer, T.M., Eldin, M.M. et al. Radical-scavenging activity of glutathione, chitin derivatives and their combination. Chem. Pap. 70, 820–827 (2016). https://doi.org/10.1515/chempap-2016-0011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0011

Keywords

Navigation